TY - JOUR
T1 - Zinc Nutrition for Improving the Productivity and Grain Biofortification of Mungbean
AU - Haider, Muhammad Umar
AU - Hussain, Mubshar
AU - Farooq, Muhammad
AU - Nawaz, Ahmad
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Mungbean (Vigna radiata (L.) Wilczek) is grown worldwide because of its high protein contents, but its production is low due to zinc (Zn) deficiency in soil. This study was conducted to assess the best mungbean genotype and Zn application method to enhance productivity and grain Zn biofortification. Two mungbean genotypes NM-92 and NM-2006 were grown using three Zn application methods and their combinations, viz. osmopriming (0.01 M), soil application (10 kg ha−1), foliar application (0.5%), osmopriming + soil, osmopriming + foliar, foliar + soil, and osmopriming + foliar + soil, whereas hydropriming and no Zn application were used as control. The results indicated that stand establishment, allometric traits, grain yield, grain biofortification, net income, and benefit-cost ratio were more in genotype NM-92 at both sites (Layyah and Multan). In pot experiment, Zn osmopriming + foliar application enhanced grain yield (90.3%) and osmopriming + foliar + soil Zn increased grain Zn concentration (45.1%) in genotype NM-92. Among the sites, at Layyah, Zn soil application + foliar enhanced grain yield (63%) and the combination of osmopriming + foliar + soil increased grain Zn concentration (79%) in genotype NM-92. At Multan site, the grain yield and grain Zn concentration were enhanced by 63.7% and 31.6%, respectively, in genotype “NM-92” with Zn soil application + foliar. The highest marginal net benefits were obtained with Zn foliar + soil application at both sites in mungbean genotype NM-92. The genotype NM-92 should be planted with Zn application as osmopriming + foliar + soil to attain better yield and grain Zn biofortification.
AB - Mungbean (Vigna radiata (L.) Wilczek) is grown worldwide because of its high protein contents, but its production is low due to zinc (Zn) deficiency in soil. This study was conducted to assess the best mungbean genotype and Zn application method to enhance productivity and grain Zn biofortification. Two mungbean genotypes NM-92 and NM-2006 were grown using three Zn application methods and their combinations, viz. osmopriming (0.01 M), soil application (10 kg ha−1), foliar application (0.5%), osmopriming + soil, osmopriming + foliar, foliar + soil, and osmopriming + foliar + soil, whereas hydropriming and no Zn application were used as control. The results indicated that stand establishment, allometric traits, grain yield, grain biofortification, net income, and benefit-cost ratio were more in genotype NM-92 at both sites (Layyah and Multan). In pot experiment, Zn osmopriming + foliar application enhanced grain yield (90.3%) and osmopriming + foliar + soil Zn increased grain Zn concentration (45.1%) in genotype NM-92. Among the sites, at Layyah, Zn soil application + foliar enhanced grain yield (63%) and the combination of osmopriming + foliar + soil increased grain Zn concentration (79%) in genotype NM-92. At Multan site, the grain yield and grain Zn concentration were enhanced by 63.7% and 31.6%, respectively, in genotype “NM-92” with Zn soil application + foliar. The highest marginal net benefits were obtained with Zn foliar + soil application at both sites in mungbean genotype NM-92. The genotype NM-92 should be planted with Zn application as osmopriming + foliar + soil to attain better yield and grain Zn biofortification.
KW - Biofortification
KW - Grain zinc concentration
KW - Mungbean yield
KW - Osmopriming
KW - Zinc
UR - http://www.scopus.com/inward/record.url?scp=85081920280&partnerID=8YFLogxK
U2 - 10.1007/s42729-020-00215-z
DO - 10.1007/s42729-020-00215-z
M3 - Article
AN - SCOPUS:85081920280
SN - 0718-9508
VL - 20
SP - 1321
EP - 1335
JO - Journal of Soil Science and Plant Nutrition
JF - Journal of Soil Science and Plant Nutrition
IS - 3
ER -