Wood density provides new opportunities for reconstructing past temperature variability from southeastern Australian trees

Alison O'Donnell, K.J. Allen, R.M. Evans, E.R. Cook, V. Trouet, P.J. Baker

    Research output: Contribution to journalArticle

    6 Citations (Scopus)

    Abstract

    © 2016 Elsevier B.V. Tree-ring based climate reconstructions have been critical for understanding past variability and recent trends in climate worldwide, but they are scarce in Australia. This is particularly the case for temperature: only one tree-ring width based temperature reconstruction - based on Huon Pine trees from Mt Read, Tasmania - exists for Australia. Here, we investigate whether additional tree-ring parameters derived from Athrotaxis cupressoides trees growing in the same region have potential to provide robust proxy records of past temperature variability.We measured wood properties, including tree-ring width (TRW), mean density, mean cell wall thickness (CWT), and tracheid radial diameter (TRD) of annual growth rings in Athrotaxis cupressoides, a long-lived, high-elevation conifer in central Tasmania, Australia. Mean density and CWT were strongly and negatively correlated with summer temperatures. In contrast, the summer temperature signal in TRW was weakly positive. The strongest climate signal in any of the tree-ring parameters was maximum temperature in January (mid-summer; JanTmax) and we chose this as the target climate variable for reconstruction. The model that explained most of the variance in JanTmax was based on TRW and mean density as predictors. TRW and mean density provided complementary proxies with mean density showing greater high-frequency (inter-annual to multi-year) variability and TRW showing more low-frequency (decadal to centennial-scale) variability. The final reconstruction model is robust, explaining 55% of the variance in JanTmax, and was used to reconstruct JanTmax for the last five centuries (1530-2010 C.E.). The reconstruction suggests that the most recent 60 years have been warmer than average in the context of the last ca. 500 years. This unusually warm period is likely linked to a coincident increase in the intensity of the subtropical ridge and dominance of the positive phase of the Southern Annular Mode in summer, which weaken the influence of the band of prevailing westerly winds and storms on Tasmanian climate. Our findings indicate that wood properties, such as mean density, are likely to provide significant contributions toward the development of robust climate reconstructions in the Southern Hemisphere and thus toward an improved understanding of past climate in Australasia.
    Original languageEnglish
    Pages (from-to)1-11
    JournalGlobal and Planetary Change
    Volume141
    Early online date10 Apr 2016
    DOIs
    Publication statusPublished - Jun 2016

    Fingerprint

    tree ring
    temperature
    climate
    summer
    climate signal
    westerly
    coniferous tree
    Southern Hemisphere

    Cite this

    @article{06ef6a77f5664aae9dd6b165e2667d8c,
    title = "Wood density provides new opportunities for reconstructing past temperature variability from southeastern Australian trees",
    abstract = "{\circledC} 2016 Elsevier B.V. Tree-ring based climate reconstructions have been critical for understanding past variability and recent trends in climate worldwide, but they are scarce in Australia. This is particularly the case for temperature: only one tree-ring width based temperature reconstruction - based on Huon Pine trees from Mt Read, Tasmania - exists for Australia. Here, we investigate whether additional tree-ring parameters derived from Athrotaxis cupressoides trees growing in the same region have potential to provide robust proxy records of past temperature variability.We measured wood properties, including tree-ring width (TRW), mean density, mean cell wall thickness (CWT), and tracheid radial diameter (TRD) of annual growth rings in Athrotaxis cupressoides, a long-lived, high-elevation conifer in central Tasmania, Australia. Mean density and CWT were strongly and negatively correlated with summer temperatures. In contrast, the summer temperature signal in TRW was weakly positive. The strongest climate signal in any of the tree-ring parameters was maximum temperature in January (mid-summer; JanTmax) and we chose this as the target climate variable for reconstruction. The model that explained most of the variance in JanTmax was based on TRW and mean density as predictors. TRW and mean density provided complementary proxies with mean density showing greater high-frequency (inter-annual to multi-year) variability and TRW showing more low-frequency (decadal to centennial-scale) variability. The final reconstruction model is robust, explaining 55{\%} of the variance in JanTmax, and was used to reconstruct JanTmax for the last five centuries (1530-2010 C.E.). The reconstruction suggests that the most recent 60 years have been warmer than average in the context of the last ca. 500 years. This unusually warm period is likely linked to a coincident increase in the intensity of the subtropical ridge and dominance of the positive phase of the Southern Annular Mode in summer, which weaken the influence of the band of prevailing westerly winds and storms on Tasmanian climate. Our findings indicate that wood properties, such as mean density, are likely to provide significant contributions toward the development of robust climate reconstructions in the Southern Hemisphere and thus toward an improved understanding of past climate in Australasia.",
    author = "Alison O'Donnell and K.J. Allen and R.M. Evans and E.R. Cook and V. Trouet and P.J. Baker",
    year = "2016",
    month = "6",
    doi = "10.1016/j.gloplacha.2016.03.010",
    language = "English",
    volume = "141",
    pages = "1--11",
    journal = "Global and Planetary Change",
    issn = "0921-8181",
    publisher = "Pergamon",

    }

    Wood density provides new opportunities for reconstructing past temperature variability from southeastern Australian trees. / O'Donnell, Alison; Allen, K.J.; Evans, R.M.; Cook, E.R.; Trouet, V.; Baker, P.J.

    In: Global and Planetary Change, Vol. 141, 06.2016, p. 1-11.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Wood density provides new opportunities for reconstructing past temperature variability from southeastern Australian trees

    AU - O'Donnell, Alison

    AU - Allen, K.J.

    AU - Evans, R.M.

    AU - Cook, E.R.

    AU - Trouet, V.

    AU - Baker, P.J.

    PY - 2016/6

    Y1 - 2016/6

    N2 - © 2016 Elsevier B.V. Tree-ring based climate reconstructions have been critical for understanding past variability and recent trends in climate worldwide, but they are scarce in Australia. This is particularly the case for temperature: only one tree-ring width based temperature reconstruction - based on Huon Pine trees from Mt Read, Tasmania - exists for Australia. Here, we investigate whether additional tree-ring parameters derived from Athrotaxis cupressoides trees growing in the same region have potential to provide robust proxy records of past temperature variability.We measured wood properties, including tree-ring width (TRW), mean density, mean cell wall thickness (CWT), and tracheid radial diameter (TRD) of annual growth rings in Athrotaxis cupressoides, a long-lived, high-elevation conifer in central Tasmania, Australia. Mean density and CWT were strongly and negatively correlated with summer temperatures. In contrast, the summer temperature signal in TRW was weakly positive. The strongest climate signal in any of the tree-ring parameters was maximum temperature in January (mid-summer; JanTmax) and we chose this as the target climate variable for reconstruction. The model that explained most of the variance in JanTmax was based on TRW and mean density as predictors. TRW and mean density provided complementary proxies with mean density showing greater high-frequency (inter-annual to multi-year) variability and TRW showing more low-frequency (decadal to centennial-scale) variability. The final reconstruction model is robust, explaining 55% of the variance in JanTmax, and was used to reconstruct JanTmax for the last five centuries (1530-2010 C.E.). The reconstruction suggests that the most recent 60 years have been warmer than average in the context of the last ca. 500 years. This unusually warm period is likely linked to a coincident increase in the intensity of the subtropical ridge and dominance of the positive phase of the Southern Annular Mode in summer, which weaken the influence of the band of prevailing westerly winds and storms on Tasmanian climate. Our findings indicate that wood properties, such as mean density, are likely to provide significant contributions toward the development of robust climate reconstructions in the Southern Hemisphere and thus toward an improved understanding of past climate in Australasia.

    AB - © 2016 Elsevier B.V. Tree-ring based climate reconstructions have been critical for understanding past variability and recent trends in climate worldwide, but they are scarce in Australia. This is particularly the case for temperature: only one tree-ring width based temperature reconstruction - based on Huon Pine trees from Mt Read, Tasmania - exists for Australia. Here, we investigate whether additional tree-ring parameters derived from Athrotaxis cupressoides trees growing in the same region have potential to provide robust proxy records of past temperature variability.We measured wood properties, including tree-ring width (TRW), mean density, mean cell wall thickness (CWT), and tracheid radial diameter (TRD) of annual growth rings in Athrotaxis cupressoides, a long-lived, high-elevation conifer in central Tasmania, Australia. Mean density and CWT were strongly and negatively correlated with summer temperatures. In contrast, the summer temperature signal in TRW was weakly positive. The strongest climate signal in any of the tree-ring parameters was maximum temperature in January (mid-summer; JanTmax) and we chose this as the target climate variable for reconstruction. The model that explained most of the variance in JanTmax was based on TRW and mean density as predictors. TRW and mean density provided complementary proxies with mean density showing greater high-frequency (inter-annual to multi-year) variability and TRW showing more low-frequency (decadal to centennial-scale) variability. The final reconstruction model is robust, explaining 55% of the variance in JanTmax, and was used to reconstruct JanTmax for the last five centuries (1530-2010 C.E.). The reconstruction suggests that the most recent 60 years have been warmer than average in the context of the last ca. 500 years. This unusually warm period is likely linked to a coincident increase in the intensity of the subtropical ridge and dominance of the positive phase of the Southern Annular Mode in summer, which weaken the influence of the band of prevailing westerly winds and storms on Tasmanian climate. Our findings indicate that wood properties, such as mean density, are likely to provide significant contributions toward the development of robust climate reconstructions in the Southern Hemisphere and thus toward an improved understanding of past climate in Australasia.

    U2 - 10.1016/j.gloplacha.2016.03.010

    DO - 10.1016/j.gloplacha.2016.03.010

    M3 - Article

    VL - 141

    SP - 1

    EP - 11

    JO - Global and Planetary Change

    JF - Global and Planetary Change

    SN - 0921-8181

    ER -