Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations

    Research output: Contribution to journalArticlepeer-review

    83 Citations (Scopus)
    371 Downloads (Pure)

    Abstract

    © 2016 Society of Chemical Industry. BACKGROUND: Lolium rigidum populations in Australia and globally have demonstrated rapid and widespread evolution of resistance to acetyl coenzyme A carboxylase (ACCase)-inhibiting and acetolactate synthase (ALS)-inhibiting herbicides. Thirty-three resistant L. rigidum populations, randomly collected from crop fields in a most recent resistance survey, were analysed for non-target-site diclofop metabolism and all known target-site ACCase gene resistance-endowing mutations. RESULTS: The HPLC profile of [14C]-diclofop-methyl in vivo metabolism revealed that 79% of these resistant L. rigidum populations showed enhanced capacity for diclofop acid metabolism (metabolic resistance). ACCase gene sequencing identified that 91% of the populations contain plants with ACCase resistance mutation(s). Importantly, 70% of the populations exhibit both non-target-site metabolic resistance and target-site ACCase mutations. CONCLUSIONS: This work demonstrates that metabolic herbicide resistance is commonly occurring in L. rigidum, and coevolution of both metabolic resistance and target-site resistance is an evolutionary reality. Metabolic herbicide resistance can potentially endow resistance to many herbicides and poses a threat to herbicide sustainability and thus crop production, calling for major research and management efforts. © 2015 Society of Chemical Industry
    Original languageEnglish
    Pages (from-to)255-263
    Number of pages9
    JournalPest Management Science
    Volume72
    Issue number2
    Early online date25 Mar 2015
    DOIs
    Publication statusPublished - 1 Feb 2016

    Fingerprint

    Dive into the research topics of 'Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations'. Together they form a unique fingerprint.

    Cite this