Wave-driven circulation patterns in the lee of groynes

    Research output: Contribution to journalArticlepeer-review

    35 Citations (Scopus)

    Abstract

    Surf zone drifters and a current meter were used to study the nearshore circulation patterns in the lee of groynes at Cottesloe Beach and City Beach in Western Australia. The circulation patterns revealed that a persistent re-circulation cell was present in the lee of the groyne which was driven by changes in wave set-up resulting from lower wave heights in the lee of the groyne. The re-circulation consisted of a longshore current directed towards the groyne which was deflected offshore due to groyne resulting in a rip current along the groyne face. The offshore-flowing rip current and the incoming waves converged at the offshore extent of this circulation cell, with the deflection of the rip current parallel to the shoreline and then completing the recirculation through an onshore component. The Eulerian measurements revealed that 55% of the currents on the lee side of the groyne were directed offshore and that these currents had a maximum speed of 2 m s−1. Spectral analysis of the wave heights and the currents revealed several corresponding peaks in the measured spectral densities with timescales between 12 s and 50 min. Numerical simulations of an idealised beach with a shore-normal groyne were conducted using a circulation model driven by waves, and confirmed the formation of a persistent eddy in the lee of the groyne. Sensitivity studies indicated that the incident wave angle, wave period, and especially the wave height controlled the circulation. The eddy vorticity, a measure of an eddy's strength, increased roughly proportional to an increase in the incident wave energy flux.
    Original languageEnglish
    Pages (from-to)1961-1974
    JournalContinental Shelf Research
    Volume29
    Issue number16
    DOIs
    Publication statusPublished - 2009

    Fingerprint

    Dive into the research topics of 'Wave-driven circulation patterns in the lee of groynes'. Together they form a unique fingerprint.

    Cite this