TY - JOUR
T1 - Volar Versus Dorsal Locking Plates With and Without Radial Styloid Locking Plates for the Fixation of Dorsally Comminuted Distal Radius Fractures: A Biomechanical Study in Cadavers
AU - Blythe, M.
AU - Stoffel, Karl
AU - Jarrett, Paul
AU - Kuster, Markus
PY - 2006
Y1 - 2006
N2 - Purpose: To compare the stability and stiffness of dorsal and volar fixed-angle distal radius constructs in a cadaveric model.Methods: A locking distal radius system was used in a combination of a dorsal and styloid plate (group 1), a single volar plate (group 2), and a combination of a volar and styloid plate (group 3) configuration. In addition a single volar 3.5-mm steel locking plate was used in group 4. Each construct was tested on 6 fresh-frozen radii with simulated unstable dorsally comminuted extra-articular distal radius fractures. Specimens were tested on a material testing machine with an extensometer and subjected to axial compression fatigue and load-to-failure testing.Results: No construct failed in fatigue testing of 250 N for 5,000 cycles. Two specimens in each group were tested for 20,000 cycles without failure. The plastic deformation in the double-plate groups was lower compared with the single-plate groups, although the difference was not statistically significant. Group 1 had the highest and group 4 the lowest failure load and stiffness, respectively. The differences between group 1 and the other groups, except failure load compared with group 3, were statistically significant. Groups 2 and 3 had a significantly higher load to failure and group 3 had a significantly higher stiffness compared with group 4.Conclusions: All constructs offer adequate stability with minimal deformation on fatigue testing under physiologic conditions. Dorsal fixed-angle constructs are stiffer and stronger than volar constructs. The addition of a styloid plate to a volar plate did not significantly improve stability in this model of simulated extra-articular dorsal comminution loaded in axial compression.
AB - Purpose: To compare the stability and stiffness of dorsal and volar fixed-angle distal radius constructs in a cadaveric model.Methods: A locking distal radius system was used in a combination of a dorsal and styloid plate (group 1), a single volar plate (group 2), and a combination of a volar and styloid plate (group 3) configuration. In addition a single volar 3.5-mm steel locking plate was used in group 4. Each construct was tested on 6 fresh-frozen radii with simulated unstable dorsally comminuted extra-articular distal radius fractures. Specimens were tested on a material testing machine with an extensometer and subjected to axial compression fatigue and load-to-failure testing.Results: No construct failed in fatigue testing of 250 N for 5,000 cycles. Two specimens in each group were tested for 20,000 cycles without failure. The plastic deformation in the double-plate groups was lower compared with the single-plate groups, although the difference was not statistically significant. Group 1 had the highest and group 4 the lowest failure load and stiffness, respectively. The differences between group 1 and the other groups, except failure load compared with group 3, were statistically significant. Groups 2 and 3 had a significantly higher load to failure and group 3 had a significantly higher stiffness compared with group 4.Conclusions: All constructs offer adequate stability with minimal deformation on fatigue testing under physiologic conditions. Dorsal fixed-angle constructs are stiffer and stronger than volar constructs. The addition of a styloid plate to a volar plate did not significantly improve stability in this model of simulated extra-articular dorsal comminution loaded in axial compression.
U2 - 10.1016/j.jhsa.2006.09.011
DO - 10.1016/j.jhsa.2006.09.011
M3 - Article
SN - 0363-5023
VL - 31
SP - 1587
EP - 1593
JO - Journal of Hand Surgery (American Volume)
JF - Journal of Hand Surgery (American Volume)
IS - 10
ER -