TY - JOUR

T1 - Vertex-primitive groups and graphs of order twice the product of two distinct odd primes

AU - Gamble, G.

AU - Praeger, Cheryl

PY - 2000

Y1 - 2000

N2 - A non-Cayley number is an integer n for which there exists a vertex-transitive graph on n vertices which is not a Cayley graph. In this paper, we complete the determination of the non-Cayley numbers of the form 2pq, where p, q are distinct odd primes. Earlier work of Miller and the second author had dealt with all such numbers corresponding to vertex-transitive graphs admitting an imprimitive subgroup of automorphisms. This paper deals with the primitive case. First the primitive permutation groups of degree 2pq are classified. This depends on the finite simple group classification. Then each of these groups G is examined to determine whether there are any non-Cayley graphs which admit G as a vertex-primitive subgroup of automorphisms, and admit no imprimitive subgroups. The outcome is that 2pq is a non-Cayley number, where 2

AB - A non-Cayley number is an integer n for which there exists a vertex-transitive graph on n vertices which is not a Cayley graph. In this paper, we complete the determination of the non-Cayley numbers of the form 2pq, where p, q are distinct odd primes. Earlier work of Miller and the second author had dealt with all such numbers corresponding to vertex-transitive graphs admitting an imprimitive subgroup of automorphisms. This paper deals with the primitive case. First the primitive permutation groups of degree 2pq are classified. This depends on the finite simple group classification. Then each of these groups G is examined to determine whether there are any non-Cayley graphs which admit G as a vertex-primitive subgroup of automorphisms, and admit no imprimitive subgroups. The outcome is that 2pq is a non-Cayley number, where 2

U2 - 10.1515/jgth.2000.020

DO - 10.1515/jgth.2000.020

M3 - Article

VL - 3

SP - 247

EP - 269

JO - Journal of Group Theory

JF - Journal of Group Theory

SN - 1433-5883

ER -