Vernalization requires epigenetic silencing of FLC by histone methylation

R Bastow, JS Mylne, C Lister, Z Lippman, RA Martienssen, C Dean

Research output: Contribution to journalArticlepeer-review

759 Citations (Scopus)

Abstract

To ensure flowering in favourable conditions, many plants flower only after an extended period of cold, namely winter. In Arabidopsis, the acceleration of flowering by prolonged cold, a process called vernalization, involves downregulation of the protein FLC, which would otherwise prevent flowering(1,2). This lowered FLC expression is maintained through subsequent development by the activity of VERNALIZATION (VRN) genes(3,4). VRN1 encodes a DNA-binding protein(4) whereas VRN2 encodes a homologue of one of the Polycomb group proteins, which maintain the silencing of genes during animal development(3). Here we show that vernalization causes changes in histone methylation in discrete domains within the FLC locus, increasing dimethylation of lysines 9 and 27 on histone H3. Such modifications identify silenced chromatin states in Drosophila and human cells(5-7). Dimethylation of H3 K27 was lost only in vrn2 mutants, but dimethylation of H3 K9 was absent from both vrn1 and vrn2, consistent with VRN1 functioning downstream of VRN2. The epigenetic memory of winter is thus mediated by a 'histone code' that specifies a silent chromatin state conserved between animals and plants.

Original languageEnglish
Pages (from-to)164-167
Number of pages4
JournalNature
Volume427
Issue number6970
DOIs
Publication statusPublished - 8 Jan 2004

Fingerprint

Dive into the research topics of 'Vernalization requires epigenetic silencing of FLC by histone methylation'. Together they form a unique fingerprint.

Cite this