TY - JOUR
T1 - Variations in opsin coding sequences cause X-linked cone dysfunction syndrome with myopia and dichromacy
AU - Mcclements, M.E.
AU - Davies, Wayne
AU - Michaelides, M.
AU - Young, T.
AU - Neitz, M.
AU - Maclaren, R.E.
AU - Moore, A.T.
AU - Hunt, David
PY - 2013
Y1 - 2013
N2 - Purpose. To determine the role of variant L opsin haplotypes in seven families with Bornholm Eye Disease (BED), a cone dysfunction syndrome with dichromacy and myopia. Methods. Analysis of the opsin genes within the L/M opsin array at Xq28 included cloning and sequencing of an exon 3-5 gene fragment, long range PCR to establish gene order, and quantitative PCR to establish gene copy number. In vitro expression of normal and variant opsins was performed to examine cellular trafficking and spectral sensitivity of pigments. Results. All except one of the BED families possessed L opsin genes that contained a rare exon 3 haplotype. The exception was a family with the deleterious Cys203Arg substitution. Two rare exon 3 haplotypes were found and, where determined, these variant opsin genes were in the first position in the array. In vitro expression in transfected cultured neuronal cells showed that the variant opsins formed functional pigments, which trafficked to the cell membranes. The variant opsins were, however, less stable than wild type. Conclusions. It is concluded that the variant L opsin haplotypes underlie BED. The reduction in the amount of variant opsin produced in vitro compared with wild type indicates a possible disease mechanism. Alternatively, the recently identified defective splicing of exon 3 of the variant opsin transcript may be involved. Both mechanisms explain the presence of dichromacy and cone dystrophy. Abnormal pigment may also underlie the myopia that is invariably present in BED subjects. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
AB - Purpose. To determine the role of variant L opsin haplotypes in seven families with Bornholm Eye Disease (BED), a cone dysfunction syndrome with dichromacy and myopia. Methods. Analysis of the opsin genes within the L/M opsin array at Xq28 included cloning and sequencing of an exon 3-5 gene fragment, long range PCR to establish gene order, and quantitative PCR to establish gene copy number. In vitro expression of normal and variant opsins was performed to examine cellular trafficking and spectral sensitivity of pigments. Results. All except one of the BED families possessed L opsin genes that contained a rare exon 3 haplotype. The exception was a family with the deleterious Cys203Arg substitution. Two rare exon 3 haplotypes were found and, where determined, these variant opsin genes were in the first position in the array. In vitro expression in transfected cultured neuronal cells showed that the variant opsins formed functional pigments, which trafficked to the cell membranes. The variant opsins were, however, less stable than wild type. Conclusions. It is concluded that the variant L opsin haplotypes underlie BED. The reduction in the amount of variant opsin produced in vitro compared with wild type indicates a possible disease mechanism. Alternatively, the recently identified defective splicing of exon 3 of the variant opsin transcript may be involved. Both mechanisms explain the presence of dichromacy and cone dystrophy. Abnormal pigment may also underlie the myopia that is invariably present in BED subjects. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
U2 - 10.1167/iovs.12-11156
DO - 10.1167/iovs.12-11156
M3 - Article
SN - 0146-0404
VL - 54
SP - 1361
EP - 1369
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 2
ER -