TY - JOUR
T1 - Utilizing Text Mining, Data Linkage and Deep Learning in Police and Health Records to Predict Future Offenses in Family and Domestic Violence.
AU - Karystianis, George
AU - Cabral, Rina Carines
AU - Han, Soyeon Caren
AU - Poon, Josiah
AU - Butler, Tony
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2021
Y1 - 2021
N2 - Family and Domestic violence (FDV) is a global problem with significant social, economic, and health consequences for victims including increased health care costs, mental trauma, and social stigmatization. In Australia, the estimated annual cost of FDV is $22 billion, with one woman being murdered by a current or former partner every week. Despite this, tools that can predict future FDV based on the features of the person of interest (POI) and victim are lacking. The New South Wales Police Force attends thousands of FDV events each year and records details as fixed fields (e.g., demographic information for individuals involved in the event) and as text narratives which describe abuse types, victim injuries, threats, including the mental health status for POIs and victims. This information within the narratives is mostly untapped for research and reporting purposes. After applying a text mining methodology to extract information from 492,393 FDV event narratives (abuse types, victim injuries, mental illness mentions), we linked these characteristics with the respective fixed fields and with actual mental health diagnoses obtained from the NSW Ministry of Health for the same cohort to form a comprehensive FDV dataset. These data were input into five deep learning models (MLP, LSTM, Bi-LSTM, Bi-GRU, BERT) to predict three FDV offense types (“hands-on,” “hands-off,” “Apprehended Domestic Violence Order (ADVO) breach”). The transformer model with BERT embeddings returned the best performance (69.00% accuracy; 66.76% ROC) for “ADVO breach” in a multilabel classification setup while the binary classification setup generated similar results. “Hands-off” offenses proved the hardest offense type to predict (60.72% accuracy; 57.86% ROC using BERT) but showed potential to improve with fine-tuning of binary classification setups. “Hands-on” offenses benefitted least from the contextual information gained through BERT embeddings in which MLP with categorical embeddings outperformed it in three out of four metrics (65.95% accuracy; 78.03% F1-score; 70.00% precision). The encouraging results indicate that future FDV offenses can be predicted using deep learning on a large corpus of police and health data. Incorporating additional data sources will likely increase the performance which can assist those working on FDV and law enforcement to improve outcomes and better manage FDV events.
AB - Family and Domestic violence (FDV) is a global problem with significant social, economic, and health consequences for victims including increased health care costs, mental trauma, and social stigmatization. In Australia, the estimated annual cost of FDV is $22 billion, with one woman being murdered by a current or former partner every week. Despite this, tools that can predict future FDV based on the features of the person of interest (POI) and victim are lacking. The New South Wales Police Force attends thousands of FDV events each year and records details as fixed fields (e.g., demographic information for individuals involved in the event) and as text narratives which describe abuse types, victim injuries, threats, including the mental health status for POIs and victims. This information within the narratives is mostly untapped for research and reporting purposes. After applying a text mining methodology to extract information from 492,393 FDV event narratives (abuse types, victim injuries, mental illness mentions), we linked these characteristics with the respective fixed fields and with actual mental health diagnoses obtained from the NSW Ministry of Health for the same cohort to form a comprehensive FDV dataset. These data were input into five deep learning models (MLP, LSTM, Bi-LSTM, Bi-GRU, BERT) to predict three FDV offense types (“hands-on,” “hands-off,” “Apprehended Domestic Violence Order (ADVO) breach”). The transformer model with BERT embeddings returned the best performance (69.00% accuracy; 66.76% ROC) for “ADVO breach” in a multilabel classification setup while the binary classification setup generated similar results. “Hands-off” offenses proved the hardest offense type to predict (60.72% accuracy; 57.86% ROC using BERT) but showed potential to improve with fine-tuning of binary classification setups. “Hands-on” offenses benefitted least from the contextual information gained through BERT embeddings in which MLP with categorical embeddings outperformed it in three out of four metrics (65.95% accuracy; 78.03% F1-score; 70.00% precision). The encouraging results indicate that future FDV offenses can be predicted using deep learning on a large corpus of police and health data. Incorporating additional data sources will likely increase the performance which can assist those working on FDV and law enforcement to improve outcomes and better manage FDV events.
U2 - 10.3389/FDGTH.2021.602683
DO - 10.3389/FDGTH.2021.602683
M3 - Article
SN - 2673-253X
VL - 3
JO - Frontiers in Digital Health
JF - Frontiers in Digital Health
M1 - 602683
ER -