Utilisation of topologically-interlocking osteomorphic blocks for multi-purpose civil construction

Hsien Ta David Yong

    Research output: ThesisDoctoral Thesis

    951 Downloads (Pure)

    Abstract

    [Truncated abstract] Interlocking block systems have gained popularity in various forms of construction, ranging from masonry to segmental retaining walls, to segmental block paving. The main attraction of the interlocking systems compared to the traditional brick and mortar construction methods are the significant labour cost and time savings, even though the manufacturing cost of interlocking blocks is higher. Currently, each commercial block system is developed for a specific construction purpose (i.e. masonry block systems cannot be used block paving, or segmental retaining wall systems cannot be used to construct load-bearing structures). A new form of interlocking block based on the concept of topological interlocking, shows potential to be used for multiple construction purposes. Topological interlocking is based on special shapes of blocks without keys or connectors as opposite to commercial interlocking block systems. Thus in the presence of the peripheral constraint each block is kept in place by kinematic constraints imposed by the neighbouring blocks. A particularly important and versatile example of topological interlocking is the system based on the osteomorphic blocks. Osteomorphic blocks have specially curved working surfaces such that they can be interlocked to form both planar structures and corners. The osteomorphic blocks also have the unique ability to assemble into various types of column elements that integrate seamlessly with planar wall elements. In this thesis, the focus is on 2 types of osteomorphic blocks, with its curved interfaces formed by either the sinusoidal/cosine (SC) or circular arc (CA) functions. Quantifying the mechanical behaviour of osteomorphic blocks and developing the concept of utilising this system for various construction purposes forms the main objective of this research.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2011

    Fingerprint Dive into the research topics of 'Utilisation of topologically-interlocking osteomorphic blocks for multi-purpose civil construction'. Together they form a unique fingerprint.

    Cite this