Projects per year
Abstract
In this paper, we use hydrodynamic zoom-in simulations of Milky Way-type haloes to explore using dust as an observational tracer to discriminate between cold and warm dark matter (WDM) universes. Comparing a cold and 3.5 keV WDM particle model, we tune the efficiency of galaxy formation in our simulations using a variable supernova rate to create Milky Way systems with similar satellite galaxy populations while keeping all other simulation parameters the same. Cold dark matter (CDM), having more substructure, requires a higher supernova efficiency than WDM to achieve the same satellite galaxy number. These different supernova efficiencies create different dust distributions around their host galaxies, which we generate by post-processing the simulation output with the POWDERDAY codebase. Analysing the resulting dust in each simulation, we find ∼4.5 times more dust in our CDM Milky Way haloes compared with WDM. The distribution of dust out to R200c is then explored, revealing that the WDM simulations are noticeably less concentrated than their CDM counterparts, although differences in substructure complicate the comparison. Our results indicate that dust is a possible unique probe to test theories of dark matter.
Original language | English |
---|---|
Pages (from-to) | 2622-2632 |
Number of pages | 11 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 534 |
Issue number | 3 |
Early online date | 14 Oct 2024 |
DOIs | |
Publication status | Published - Nov 2024 |
Fingerprint
Dive into the research topics of 'Using dust to constrain dark matter models'. Together they form a unique fingerprint.-
Centre of Excellence for Dark Matter Particle Physics
Barberio, E. (Investigator 01), Williams, A. (Investigator 02), Bell, N. (Investigator 03), Stuchbery, A. (Investigator 04), Tobar, M. (Investigator 05), Boehm, C. (Investigator 06) & Wallner, A. (Investigator 07)
ARC Australian Research Council
1/01/20 → 31/12/26
Project: Research
-
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions
Kewley, L. (Investigator 01), Wyithe, S. (Investigator 02), Sadler, E. (Investigator 03), Staveley-Smith, L. (Investigator 04), Glazebrook, K. (Investigator 05), Jackson, C. (Investigator 06), Bland-Hawthorn, J. (Investigator 07), Asplund, M. (Investigator 08), Power, C. (Investigator 09) & Driver, S. (Investigator 10)
ARC Australian Research Council
1/01/17 → 31/12/24
Project: Research