TY - JOUR
T1 - Use and calibration of portable X-Ray fluorescence analysers: Application to lithogeochemical exploration for komatiite-hosted nickel sulphide deposits
AU - Le Vaillant, Margaux
AU - Barnes, S.J.
AU - Fisher, L.A.
AU - Fiorentini, Marco
AU - Caruso, S.
PY - 2014
Y1 - 2014
N2 - Portable X-Ray Fluorescence (pXRF) analysers allow on-site geochemical analysis of rock powders and drill core. The main advantages of pXRF analysis over conventional laboratory analysis are the speed of data collection and the low cost of the analyses, permitting the collection of extensive, spatially representative datasets. However, these factors only become useful if the quality of the data meets the requirements needed for the purposes of the study. Here, we evaluate the possible use of portable XRF to determine element concentrations and ratios used in exploration for komatiite-hosted nickel sulphides. A portable XRF analyser was used to measure a series of chalcophile and lithophile element concentrations (Si, S, K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, As, Sr, and Zr) of 75 samples from three komatiite units associated with nickel sulphide ores in the Yilgarn Craton, Western Australia. Crucial steps in the study were the development of a strict calibration process as well as numerous data quality checks. The 670 analyses collected in this study were compared with conventional laboratory XRF data on discriminant diagrams commonly utilized in exploration for komatiite-hosted nickel sulphides (Cr vs Ni and Ni/Ti vs Ni/Cr). After comparing the results obtained with pXRF during this study with the laboratory values, we can conclude that portable XRF analyses can be used for rapid assessment of the nickel sulphide prospectivity of komatiites provided that strict control protocols are followed. © 2014 AAG/The Geological Society of London.
AB - Portable X-Ray Fluorescence (pXRF) analysers allow on-site geochemical analysis of rock powders and drill core. The main advantages of pXRF analysis over conventional laboratory analysis are the speed of data collection and the low cost of the analyses, permitting the collection of extensive, spatially representative datasets. However, these factors only become useful if the quality of the data meets the requirements needed for the purposes of the study. Here, we evaluate the possible use of portable XRF to determine element concentrations and ratios used in exploration for komatiite-hosted nickel sulphides. A portable XRF analyser was used to measure a series of chalcophile and lithophile element concentrations (Si, S, K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, As, Sr, and Zr) of 75 samples from three komatiite units associated with nickel sulphide ores in the Yilgarn Craton, Western Australia. Crucial steps in the study were the development of a strict calibration process as well as numerous data quality checks. The 670 analyses collected in this study were compared with conventional laboratory XRF data on discriminant diagrams commonly utilized in exploration for komatiite-hosted nickel sulphides (Cr vs Ni and Ni/Ti vs Ni/Cr). After comparing the results obtained with pXRF during this study with the laboratory values, we can conclude that portable XRF analyses can be used for rapid assessment of the nickel sulphide prospectivity of komatiites provided that strict control protocols are followed. © 2014 AAG/The Geological Society of London.
U2 - 10.1144/geochem2012-166
DO - 10.1144/geochem2012-166
M3 - Article
SN - 1467-7873
VL - 14
SP - 199
EP - 209
JO - Geochemistry: Exploration, Environment, Analysis
JF - Geochemistry: Exploration, Environment, Analysis
IS - 3
ER -