Unravelling the enigmatic ISM conditions in Minkowski's object

Henry R.M. Zovaro, Robert Sharp, Nicole P.H. Nesvadba, Lisa Kewley, Ralph Sutherland, Philip Taylor, Brent Groves, Alexander Y. Wagner, Dipanjan Mukherjee, Geoffrey V. Bicknell

Research output: Contribution to journalArticle

Abstract

Local examples of jet-induced star formation lend valuable insight into its significance in galaxy evolution and can provide important observational constraints for theoretical models of positive feedback. Using optical integral field spectroscopy, we present an analysis of the ISM conditions in Minkowski's object (z = 0.0189), a peculiar star-forming dwarf galaxy located in the path of a radio jet from the galaxy NGC 541. Full spectral fitting with ppxf indicates that Minkowski's object primarily consists of a young stellar population ∼10 Myrold, confirming that the bulk of the object's stellar mass formed during a recent jet interaction. Minkowski's object exhibits line ratios largely consistent with star formation, although there is evidence for a low level (15) of contamination from a non-stellar ionizing source. Strong-line diagnostics reveal a significant variation in the gas-phase metallicity within the object, with rm O/H) + 12 varying by ∼0.5which cannot be explained by in-situ star formation, an enriched outflow from the jet, or enrichment of gas in the stellar bridge between NGC 541 and NGC 545/547. We hypothesize that Minkowski's object either (i) was formed as a result of jet-induced star formation in pre-existing gas clumps in the stellar bridge, or (ii) is a gas-rich dwarf galaxy that is experiencing an elevation in its star formation rate due to a jet interaction, and will eventually redden and fade, becoming an ultradiffuse galaxy as it is processed by the cluster.

Original languageEnglish
Pages (from-to)4940-4960
Number of pages21
JournalMonthly Notices of the Royal Astronomical Society
Volume499
Issue number4
DOIs
Publication statusPublished - Dec 2020

Fingerprint Dive into the research topics of 'Unravelling the enigmatic ISM conditions in Minkowski's object'. Together they form a unique fingerprint.

Cite this