Two- and three-dimensional instabilities in the wake of a circular cylinder near a moving wall

    Research output: Contribution to journalArticlepeer-review

    55 Citations (Scopus)
    652 Downloads (Pure)

    Abstract

    Two-dimensional (2D) and three-dimensional (3D) instabilities in the wake of a circular cylinder placed near to a moving wall are investigated using direct numerical simulation (DNS). The study covers a parameter space spanning a non-dimensional gap ratio between 0.1 to 19.5 and Reynolds number up to 300. Variations in the flow characteristics with and are studied, and their correlations with the hydrodynamic forces on the cylinder are investigated. It is also found that the monotonic increase of the critical for 2D instability with decreasing is influenced by variations in the mean flow rate around the cylinder, the confinement of the near-wake flow by the plane wall and the characteristics of the shear layer formed above the moving wall directly below the cylinder. The first factor destabilizes the wake flow at a moderate while the latter two factors stabilize the wake flow with decreasing . In terms of 3D instability, the flow transition sequence of '2D steady 3D steady 3D unsteady' for small gap ratios is analysed at . It is found that the 3D steady and 3D unsteady flows are triggered by Mode C instability due to wall proximity. However, the Mode C structure is not sustained indefinitely, since interference with the shear layer leads to other 3D steady and unsteady flow structures.

    Original languageEnglish
    Pages (from-to)435-462
    Number of pages28
    JournalJournal of Fluid Mechanics
    Volume812
    Early online date5 Jan 2017
    DOIs
    Publication statusPublished - 10 Feb 2017

    Fingerprint

    Dive into the research topics of 'Two- and three-dimensional instabilities in the wake of a circular cylinder near a moving wall'. Together they form a unique fingerprint.

    Cite this