Topical application of an irreversible small molecule inhibitor of lysyl oxidases ameliorates skin scarring and fibrosis

Nutan Chaudhari, Alison D. Findlay, Andrew W. Stevenson, Tristan D. Clemons, Yimin Yao, Amar Joshi, Sepidar Sayar, Gordon Wallace, Suzanne Rea, Priyanka Toshniwal, Zhenjun Deng, Philip E. Melton, Nicole Hortin, K. Swaminathan Iyer, Wolfgang Jarolimek, Fiona M. Wood, Mark W. Fear

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Scarring is a lifelong consequence of skin injury, with scar stiffness and poor appearance presenting physical and psychological barriers to a return to normal life. Lysyl oxidases are a family of enzymes that play a critical role in scar formation and maintenance. Lysyl oxidases stabilize the main component of scar tissue, collagen, and drive scar stiffness and appearance. Here we describe the development and characterisation of an irreversible lysyl oxidase inhibitor, PXS-6302. PXS-6302 is ideally suited for skin treatment, readily penetrating the skin when applied as a cream and abolishing lysyl oxidase activity. In murine models of injury and fibrosis, topical application reduces collagen deposition and cross-linking. Topical application of PXS-6302 after injury also significantly improves scar appearance without reducing tissue strength in porcine injury models. PXS-6302 therefore represents a promising therapeutic to ameliorate scar formation, with potentially broader applications in other fibrotic diseases.

Original languageEnglish
Article number5555
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Topical application of an irreversible small molecule inhibitor of lysyl oxidases ameliorates skin scarring and fibrosis'. Together they form a unique fingerprint.

Cite this