Projects per year
Abstract
Revealing the atomistic mechanisms for the high-temperature mechanical behavior of materials is important for optimizing their properties for service at high-temperatures and their thermomechanical processing. However, due to materials microstructure’s dynamic recovery and the absence of available in situ techniques, the high-temperature deformation behavior and atomistic mechanisms of materials are difficult to evaluate. Here, we report the development of a microelectromechanical systems-based thermomechanical testing apparatus that enables mechanical testing at temperatures reaching 1556 K inside a transmission electron microscope for in situ investigation with atomic-resolution. With this unique technique, we first uncovered that tungsten fractures at 973 K in a ductile manner via a strain-induced multi-step body-centered cubic (BCC)-to-face-centered cubic (FCC) transformation and dislocation activities within the strain-induced FCC phase. Both events reduce the stress concentration at the crack tip and retard crack propagation. Our research provides an approach for timely and atomic-resolved high-temperature mechanical investigation of materials at high-temperatures.
Original language | English |
---|---|
Article number | 2218 |
Journal | Nature Communications |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Dec 2021 |
Fingerprint
Dive into the research topics of 'Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Approaching near-ideal strength for bulk amorphous metals
Liu, Y. (Investigator 01) & Han, X. (Investigator 02)
ARC Australian Research Council
15/06/19 → 31/12/23
Project: Research