Time-space evolution of an Archean craton: A Hf-isotope window into continent formation

D. R. Mole, C. L. Kirkland, M. L. Fiorentini, S. J. Barnes, K. F. Cassidy, C. Isaac, E. A. Belousova, M. Hartnady, N. Thebaud

Research output: Contribution to journalReview article

Abstract

The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. Here, we present a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon, and apply it to constrain the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma, in a proto-craton consisting of the Narryer and north-central Southern Cross Domain. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000–2900 Ma, 2825–2800 Ma, and ca. 2730–2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infra-crustal and/or drip-tectonic settings. We argue that subduction-like processes formed a minor tectonic component, re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these processes led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.

Original languageEnglish
Article number102831
JournalEarth-Science Reviews
Volume196
DOIs
Publication statusPublished - 1 Sep 2019

Fingerprint

craton
Archean
isotope
crust
tectonics
terrane
continent
Hadean
komatiite
trondhjemite
tonalite
rift zone
mafic rock
reworking
granodiorite
repository
tectonic setting
geodynamics
magmatism
Precambrian

Cite this

@article{38c7fadb9ebf44d9aaabba7ba23b000d,
title = "Time-space evolution of an Archean craton: A Hf-isotope window into continent formation",
abstract = "The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. Here, we present a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon, and apply it to constrain the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma, in a proto-craton consisting of the Narryer and north-central Southern Cross Domain. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000–2900 Ma, 2825–2800 Ma, and ca. 2730–2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infra-crustal and/or drip-tectonic settings. We argue that subduction-like processes formed a minor tectonic component, re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these processes led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.",
keywords = "Continental crust, Crustal evolution, Geochronology, Plume tectonics, Subduction, Yilgarn",
author = "Mole, {D. R.} and Kirkland, {C. L.} and Fiorentini, {M. L.} and Barnes, {S. J.} and Cassidy, {K. F.} and C. Isaac and Belousova, {E. A.} and M. Hartnady and N. Thebaud",
year = "2019",
month = "9",
day = "1",
doi = "10.1016/j.earscirev.2019.04.003",
language = "English",
volume = "196",
journal = "Earth-Science Review",
issn = "0012-8252",
publisher = "Elsevier",

}

Time-space evolution of an Archean craton : A Hf-isotope window into continent formation. / Mole, D. R.; Kirkland, C. L.; Fiorentini, M. L.; Barnes, S. J.; Cassidy, K. F.; Isaac, C.; Belousova, E. A.; Hartnady, M.; Thebaud, N.

In: Earth-Science Reviews, Vol. 196, 102831, 01.09.2019.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Time-space evolution of an Archean craton

T2 - A Hf-isotope window into continent formation

AU - Mole, D. R.

AU - Kirkland, C. L.

AU - Fiorentini, M. L.

AU - Barnes, S. J.

AU - Cassidy, K. F.

AU - Isaac, C.

AU - Belousova, E. A.

AU - Hartnady, M.

AU - Thebaud, N.

PY - 2019/9/1

Y1 - 2019/9/1

N2 - The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. Here, we present a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon, and apply it to constrain the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma, in a proto-craton consisting of the Narryer and north-central Southern Cross Domain. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000–2900 Ma, 2825–2800 Ma, and ca. 2730–2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infra-crustal and/or drip-tectonic settings. We argue that subduction-like processes formed a minor tectonic component, re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these processes led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.

AB - The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. Here, we present a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon, and apply it to constrain the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma, in a proto-craton consisting of the Narryer and north-central Southern Cross Domain. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000–2900 Ma, 2825–2800 Ma, and ca. 2730–2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infra-crustal and/or drip-tectonic settings. We argue that subduction-like processes formed a minor tectonic component, re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these processes led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.

KW - Continental crust

KW - Crustal evolution

KW - Geochronology

KW - Plume tectonics

KW - Subduction

KW - Yilgarn

UR - http://www.scopus.com/inward/record.url?scp=85067478917&partnerID=8YFLogxK

U2 - 10.1016/j.earscirev.2019.04.003

DO - 10.1016/j.earscirev.2019.04.003

M3 - Review article

VL - 196

JO - Earth-Science Review

JF - Earth-Science Review

SN - 0012-8252

M1 - 102831

ER -