Projects per year
Abstract
Osteoporosis is a class of metabolic bone disease caused by complexed ramifications. Overactivation of osteoclasts due to a sudden decreased estrogen level plays a pivotal role for postmenopausal women suffering from osteoporosis. Therefore, inhibiting osteoclast formation and function has become a major direction for the treatment of osteoporosis. Tiliroside (Tle) is a salutary dietary glycosidic flavonoid extracted from Oriental Paperbush flower, which has been reported to have an anti-inflammation effect. However, whether Tle affects the osteoclastogenesis and bone resorption remains unknown. Herein, we demonstrate that Tle prevents bone loss in ovariectomy in mice and inhibits osteoclast differentiation and bone resorption stimulated by receptor activator of nuclear factor-κB ligand (RANKL) in vitro. Molecular mechanism studies reveal that Tle reduces RANKL-induced activation of mitogen-activated protein kinase and T-cell nuclear factor 1 pathways, and osteoclastogenesis-related marker gene expression, including cathepsin K (Ctsk), matrix metalloproteinase 9, tartrate-resistant acid phosphatase (Acp5), and Atp6v0d2. Our research indicates that Tle suppresses osteoclastogenesis and bone loss by downregulating the RANKL-mediated signaling protein activation and expression. In addition, Tle inhibits intracellular reactive oxygen species generation which is related to the formation of osteoclasts. Therefore, Tle might serve as a potential drug for osteolytic disease such as osteoporosis.
Original language | English |
---|---|
Pages (from-to) | 16263-16274 |
Number of pages | 12 |
Journal | Journal of Cellular Physiology |
Volume | 234 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1 Sept 2019 |
Fingerprint
Dive into the research topics of 'Tiliroside is a new potential therapeutic drug for osteoporosis in mice'. Together they form a unique fingerprint.Projects
- 3 Finished
-
‘Sorting-Out’ the molecular link between SNX10 and Autophagy in Osteoclasts
Xu, J. (Investigator 01), Pavlos, N. (Investigator 02) & Tickner, J. (Investigator 03)
NHMRC National Health and Medical Research Council
1/01/19 → 31/12/22
Project: Research
-
Furin: Carving-up vital substrates for bone remodelling and homeostasis
Xu, J. (Investigator 01), Pavlos, N. (Investigator 02) & Tickner, J. (Investigator 03)
NHMRC National Health and Medical Research Council
1/01/16 → 31/12/19
Project: Research
-
The influence of mutant p62 proteins expressed in Pagets Disease of bone on cell survival & death
Xu, J. (Investigator 01), Walsh, J. (Investigator 02), Rea, S. (Investigator 03), Pavlos, N. (Investigator 04) & Ratajczak, T. (Investigator 05)
NHMRC National Health and Medical Research Council
1/01/12 → 31/12/14
Project: Research