TY - JOUR
T1 - The Yinachang Fe-Cu-Au-U-REE deposit and its relationship with intermediate to mafic intrusions, SW China
T2 - Implications for ore genesis and geodynamic setting
AU - Zhu, Ligang
AU - Liu, Jiajun
AU - Bagas, Leon
AU - Carranza, Emmanuel John M.
AU - Zhai, Degao
AU - Meng, Guangzhi
AU - Wang, Jianping
AU - Wang, Yinhong
AU - Zhang, Fangfang
AU - Liu, Zhenjiang
PY - 2019/1
Y1 - 2019/1
N2 - The Yinachang Fe-Cu-Au-U-REE deposit is located in the Kangdian region at the southwestern margin of the Yangtze Block. This contribution presents petrological, geochronological, whole rock geochemical, and Rare Earth Elements (REE) geochemistry of zircons of gabbro and diorite dykes associated with the Yinachang Fe-Cu-Au-U-REE deposit, aiming to constrain the age of the mineralisation and help refine our understanding of the tectonic setting of the region. Zircons from diorite have a Palaeoproterozoic U-Pb age of 2014 +/- 30 Ma, and zircons from the gabbro could not be dated because they are metamict, having a high concentration of uranium. The ca. 2014 Ma age of the zircons in the diorite indicates that the southwestern part of the Yangtze Block is partly synchronous with the Columbia Supercontinent. Geochemically, the diorite and gabbro are enriched in large-ion lithophile elements (LILEs) such as Rb and U, and depleted in high-field-strength elements (HFSEs) such as Nb, P, Ti, Ba, and Sr. The diorite is enriched in light REEs (LREEs) and has a slight to negligible Eu anomaly, which are characteristic of ocean-island basalts containing mantle-derived high potassic calc-alkaline rocks. In contrast, the gabbro is weakly enriched in LREES and has a slightly negative Eu anomaly similar to those of potassic calc-alkaline enriched mid-ocean-ridge basalt. The average combined REE content of zircons from the gabbro is 19401 ppm and is significantly higher than that of the zircons from the diorite averaging 1020 ppm. This indicates that the gabbro is closely related with the REE mineralisation at the deposit. The geochemistry of the diorite indicates that it formed at the continental margin of a volcanic-arc. It also indicates that the magmatic rocks in the region have a possible mantle plume origin contaminated by crustal material and located at a transitional zone between a rift and an ocean-continent tectonic setting.
AB - The Yinachang Fe-Cu-Au-U-REE deposit is located in the Kangdian region at the southwestern margin of the Yangtze Block. This contribution presents petrological, geochronological, whole rock geochemical, and Rare Earth Elements (REE) geochemistry of zircons of gabbro and diorite dykes associated with the Yinachang Fe-Cu-Au-U-REE deposit, aiming to constrain the age of the mineralisation and help refine our understanding of the tectonic setting of the region. Zircons from diorite have a Palaeoproterozoic U-Pb age of 2014 +/- 30 Ma, and zircons from the gabbro could not be dated because they are metamict, having a high concentration of uranium. The ca. 2014 Ma age of the zircons in the diorite indicates that the southwestern part of the Yangtze Block is partly synchronous with the Columbia Supercontinent. Geochemically, the diorite and gabbro are enriched in large-ion lithophile elements (LILEs) such as Rb and U, and depleted in high-field-strength elements (HFSEs) such as Nb, P, Ti, Ba, and Sr. The diorite is enriched in light REEs (LREEs) and has a slight to negligible Eu anomaly, which are characteristic of ocean-island basalts containing mantle-derived high potassic calc-alkaline rocks. In contrast, the gabbro is weakly enriched in LREES and has a slightly negative Eu anomaly similar to those of potassic calc-alkaline enriched mid-ocean-ridge basalt. The average combined REE content of zircons from the gabbro is 19401 ppm and is significantly higher than that of the zircons from the diorite averaging 1020 ppm. This indicates that the gabbro is closely related with the REE mineralisation at the deposit. The geochemistry of the diorite indicates that it formed at the continental margin of a volcanic-arc. It also indicates that the magmatic rocks in the region have a possible mantle plume origin contaminated by crustal material and located at a transitional zone between a rift and an ocean-continent tectonic setting.
KW - Columbia supercontinent
KW - Yangtze block
KW - Kangdian region
KW - Yinachang deposit
KW - LA-ICP-MS zircon U-Pb dating
KW - Zircon trace element analysis
KW - LATE PALEOPROTEROZOIC SEDIMENTARY
KW - SOUTHWESTERN YANGTZE BLOCK
KW - PB ZIRCON GEOCHRONOLOGY
KW - ZHAIWA MO-CU
KW - SOUTH CHINA
KW - YUNNAN PROVINCE
KW - MESOPROTEROZOIC SUPERCONTINENT
KW - ISOTOPIC CONSTRAINTS
KW - DAHONGSHAN GROUP
KW - HEKOU AREA
U2 - 10.1016/j.oregeorev.2018.11.005
DO - 10.1016/j.oregeorev.2018.11.005
M3 - Article
VL - 104
SP - 190
EP - 207
JO - Ore Geology Reviews
JF - Ore Geology Reviews
SN - 0169-1368
ER -