TY - JOUR
T1 - The velocity function in the local environment from λcdm and λwdm constrained simulations
AU - Zavala, J.
AU - Jing, Y. P.
AU - Faltenbacher, A.
AU - Yepes, G.
AU - Hoffman, Y.
AU - Gottlöber, Stefan
AU - Catinella, B.
PY - 2009
Y1 - 2009
N2 - Using constrained simulations of the local universe for generic cold dark matter (CDM) and for 1 keV warm dark matter (WDM), we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function (MF) within 20 h -1 Mpc of the Local Group is 2 times larger than the universal MF in the 109-1013 h -1 M mass range. Imposing the field of view of the ongoing H I blind survey Arecibo Legacy Fast ALFA (ALFALFA) in our simulations, we predict that the velocity function (VF) in the Virgo-direction region (VdR) exceeds the universal VF by a factor of 3. Furthermore, employing a scheme to translate the halo VF into a galaxy VF, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the VF in the 80-300 km s-1 velocity range, having a value 10 times larger than the universal VF in the VdR. In the low-velocity regime, 35-80 km s-1, the WDM simulation reproduces the observed flattening of the VF. In contrast, the simulation with CDM predicts a steep rise in the VF toward lower velocities; for V max = 35 km s-1, it forecasts 10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, our results indicate a potential problem for the CDM paradigm or for the conventional assumptions about energetic feedback in dwarf galaxies.
AB - Using constrained simulations of the local universe for generic cold dark matter (CDM) and for 1 keV warm dark matter (WDM), we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function (MF) within 20 h -1 Mpc of the Local Group is 2 times larger than the universal MF in the 109-1013 h -1 M mass range. Imposing the field of view of the ongoing H I blind survey Arecibo Legacy Fast ALFA (ALFALFA) in our simulations, we predict that the velocity function (VF) in the Virgo-direction region (VdR) exceeds the universal VF by a factor of 3. Furthermore, employing a scheme to translate the halo VF into a galaxy VF, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the VF in the 80-300 km s-1 velocity range, having a value 10 times larger than the universal VF in the VdR. In the low-velocity regime, 35-80 km s-1, the WDM simulation reproduces the observed flattening of the VF. In contrast, the simulation with CDM predicts a steep rise in the VF toward lower velocities; for V max = 35 km s-1, it forecasts 10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, our results indicate a potential problem for the CDM paradigm or for the conventional assumptions about energetic feedback in dwarf galaxies.
KW - Dark matter
KW - Local Group
UR - http://www.scopus.com/inward/record.url?scp=70549101268&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/700/2/1779
DO - 10.1088/0004-637X/700/2/1779
M3 - Article
AN - SCOPUS:70549101268
SN - 0004-637X
VL - 700
SP - 1779
EP - 1793
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
ER -