The variation of flow and turbulence across the sediment-water interface

J. J. Voermans, M. Ghisalberti, G. N. Ivey

    Research output: Contribution to journalArticlepeer-review

    85 Citations (Scopus)

    Abstract

    A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number (ReK = Ku/ν, where K is the sediment permeability, uis the shear velocity and ν is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows (Rek ≪1) and highly permeable canopy flows (Rek ≫ 1) . Within this range, the sediment-water interface (SWI) is identified as a transitional region, with Rek in aquatic systems typically O(0.001-10). As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and Rek. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as ReK → 0 and towards those seen in flows over highly permeable boundaries as Rek →. A value of Rek ≈ 1-2 is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI. 

    Original languageEnglish
    Pages (from-to)413-437
    Number of pages25
    JournalJournal of Fluid Mechanics
    Volume824
    DOIs
    Publication statusPublished - 10 Aug 2017

    Fingerprint

    Dive into the research topics of 'The variation of flow and turbulence across the sediment-water interface'. Together they form a unique fingerprint.

    Cite this