TY - JOUR
T1 - The variation of flow and turbulence across the sediment-water interface
AU - Voermans, J. J.
AU - Ghisalberti, M.
AU - Ivey, G. N.
PY - 2017/8/10
Y1 - 2017/8/10
N2 - A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number (ReK = Ku/ν, where K is the sediment permeability, uis the shear velocity and ν is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows (Rek ≪1) and highly permeable canopy flows (Rek ≫ 1) . Within this range, the sediment-water interface (SWI) is identified as a transitional region, with Rek in aquatic systems typically O(0.001-10). As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and Rek. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as ReK → 0 and towards those seen in flows over highly permeable boundaries as Rek →. A value of Rek ≈ 1-2 is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.
AB - A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number (ReK = Ku/ν, where K is the sediment permeability, uis the shear velocity and ν is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows (Rek ≪1) and highly permeable canopy flows (Rek ≫ 1) . Within this range, the sediment-water interface (SWI) is identified as a transitional region, with Rek in aquatic systems typically O(0.001-10). As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and Rek. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as ReK → 0 and towards those seen in flows over highly permeable boundaries as Rek →. A value of Rek ≈ 1-2 is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.
KW - Shear layer turbulence
KW - turbulent boundary layers
KW - turbulent mixing
UR - http://www.scopus.com/inward/record.url?scp=85021930613&partnerID=8YFLogxK
U2 - 10.1017/jfm.2017.345
DO - 10.1017/jfm.2017.345
M3 - Article
AN - SCOPUS:85021930613
SN - 0022-1120
VL - 824
SP - 413
EP - 437
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -