The validation and use of the rat intestinal epithelial cell line 6 (IEC-6) to study the role of ferroportin1 and divalent metal transporter 1 in the uptake of iron from Fe(II) and Fe(III)

Research output: ThesisDoctoral Thesis

175 Downloads (Pure)

Abstract

[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] Iron is vital for almost all living organisms by participating in a wide variety of metabolic processes, including oxygen transport, DNA synthesis, and electron transport. However, iron concentrations in body tissues must be tightly regulated because excessive iron leads to tissue damage, as a result of formation of free radicals. In mammals since no controlled means of eliminating unwanted iron has evolved, body iron balance is maintained by alterations in dietary iron intake. This occurs in the duodenum where most dietary iron is absorbed. Absorption involves at least two steps, uptake of iron from the intestinal lumen and then its transport into the body, processes that occur at the apical and basal membranes of enterocytes, respectively. In chapter one of this thesis the background information relevant to iron absorption is described. Despite numerous studies, the role of these proteins in iron absorption remains unclear, partly because many studies have reported them in non-enterocyte cell lines where the expression of the proteins involved in iron absorption is unlikely and therefore the physiological significance of the findings uncertain. Therefore, the study of iron absorption would value from additional cell lines of intestinal origin being used, preferably derived from a species used to comprehensively study this process in vivo, namely the rat. Validation of such a model would enable comparisons to be made from a molecular level to its relevance in the whole organism. In chapter 3 of this thesis, the rat intestinal cell line 6 (IEC-6) was examined as a model of intestinal iron transport. IEC-6 cells expressed many of the proteins involved in iron absorption, but not the ferrireductase Dcytb, sucrase or αvβ3 integrin. In addition, in IEC-6 cells the expression of the apical transporter divalent metal transporter 1 (DMT1), the iron storage protein ferritin, the uptake of Fe(II) and Fe(III) were regulated by cellular iron stores as is seen in vivo.
Original languageEnglish
QualificationDoctor of Philosophy
Publication statusUnpublished - 2003

Fingerprint Dive into the research topics of 'The validation and use of the rat intestinal epithelial cell line 6 (IEC-6) to study the role of ferroportin1 and divalent metal transporter 1 in the uptake of iron from Fe(II) and Fe(III)'. Together they form a unique fingerprint.

Cite this