The T869C TGF Beta polymorphism is associated with fracture, bone mineral density, and calcaneal quantitative ultrasound in elderly women

Ian Dick, A. Devine, S. Li, S.S. Dhaliwal, Richard Prince

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Osteoporosis is a disease that is strongly genetically determined and polymorphisms present in a range of candidate genes may be involved. A number of previous studies have shown an association between the T869C functional polymorphism of the gene for transforming growth factor beta (TGF beta) and bone mineral density (BMD) and fracture, but these studies have been limited to relatively small studies of selected subjects. In a population-based study of 1337 white women over age 70 we examined the TGF beta T869 polymorphism in relation to BMD, calcaneal quantitative ultrasound (QUS), and prevalent and incident fracture. The TGF beta C allele was observed in 50% of the subjects and was associated with reduced hip BMD at all sites (2.8% total hip, 2.4% femoral neck, 2.6% intertrochanter, and 3.4% trochanter) compared to the TGF beta TT genotype. The TGF beta C allele was also associated with a reduction in the QUS parameters BUA, SOS, and stiffness of 0.87%, 0.26%, and 2.4%, respectively, compared to the TGF beta TT genotype. After adjustment for body mass index in an analysis of variance model, the effect of the TGF beta C allele remained significant at the total hip, the femoral neck, and the trochanter, and for the QUS SOS and stiffness parameters. The TGF beta C allele was associated with an increase in osteoporosis [T score less than or equal to -2.5 SD; odds ratio (OR) 2.07; 95% confidence interval (CI) 1.19-3.60] and prevalent fracture (1.37; 95% CI 1.06-1.75). After adjustment for BMD and QUS stiffness, the association of the TGF beta C allele with prevalent fracture was still present (OR 1.40; 95% CI 1.04-1.89), suggesting that the effect of the C allele on fracture was independent of a reduction in BMD and QUS stiffness. Subjects with normal BMD and a TGF beta C allele had an increased risk of incident fracture over 3 years compared to subjects with normal BMD and a TGF beta TT genotype (relative risk 3.95: 95% CI 1.52-10.29). This association was not found in osteopenic or in osteoporotic subjects, indicating a BMD-TGF beta C allele interaction in relation to the association of the TGF beta C allele with fracture risk. These findings are of potential clinical usefulness, as the TGF beta T869C genotype could be used, in conjunction with other genetic and clinical information, to determine an individual's risk of osteoporosis. (C) 2003 Elsevier Science (USA). All rights reserved.
Original languageEnglish
Pages (from-to)335-341
JournalBone
Volume33
Issue number3
DOIs
Publication statusPublished - 2003

Fingerprint

Transforming Growth Factor beta
Bone Density
Alleles
Genotype
Confidence Intervals
Osteoporosis
Femur Neck
Femur
Hip
Odds Ratio
Pelvic Bones
Bone Fractures
Genes
Analysis of Variance
Body Mass Index

Cite this

@article{2d0f95831214470cbff546f6c2f72a3a,
title = "The T869C TGF Beta polymorphism is associated with fracture, bone mineral density, and calcaneal quantitative ultrasound in elderly women",
abstract = "Osteoporosis is a disease that is strongly genetically determined and polymorphisms present in a range of candidate genes may be involved. A number of previous studies have shown an association between the T869C functional polymorphism of the gene for transforming growth factor beta (TGF beta) and bone mineral density (BMD) and fracture, but these studies have been limited to relatively small studies of selected subjects. In a population-based study of 1337 white women over age 70 we examined the TGF beta T869 polymorphism in relation to BMD, calcaneal quantitative ultrasound (QUS), and prevalent and incident fracture. The TGF beta C allele was observed in 50{\%} of the subjects and was associated with reduced hip BMD at all sites (2.8{\%} total hip, 2.4{\%} femoral neck, 2.6{\%} intertrochanter, and 3.4{\%} trochanter) compared to the TGF beta TT genotype. The TGF beta C allele was also associated with a reduction in the QUS parameters BUA, SOS, and stiffness of 0.87{\%}, 0.26{\%}, and 2.4{\%}, respectively, compared to the TGF beta TT genotype. After adjustment for body mass index in an analysis of variance model, the effect of the TGF beta C allele remained significant at the total hip, the femoral neck, and the trochanter, and for the QUS SOS and stiffness parameters. The TGF beta C allele was associated with an increase in osteoporosis [T score less than or equal to -2.5 SD; odds ratio (OR) 2.07; 95{\%} confidence interval (CI) 1.19-3.60] and prevalent fracture (1.37; 95{\%} CI 1.06-1.75). After adjustment for BMD and QUS stiffness, the association of the TGF beta C allele with prevalent fracture was still present (OR 1.40; 95{\%} CI 1.04-1.89), suggesting that the effect of the C allele on fracture was independent of a reduction in BMD and QUS stiffness. Subjects with normal BMD and a TGF beta C allele had an increased risk of incident fracture over 3 years compared to subjects with normal BMD and a TGF beta TT genotype (relative risk 3.95: 95{\%} CI 1.52-10.29). This association was not found in osteopenic or in osteoporotic subjects, indicating a BMD-TGF beta C allele interaction in relation to the association of the TGF beta C allele with fracture risk. These findings are of potential clinical usefulness, as the TGF beta T869C genotype could be used, in conjunction with other genetic and clinical information, to determine an individual's risk of osteoporosis. (C) 2003 Elsevier Science (USA). All rights reserved.",
author = "Ian Dick and A. Devine and S. Li and S.S. Dhaliwal and Richard Prince",
year = "2003",
doi = "10.1016/S8756-3282(03)00158-3",
language = "English",
volume = "33",
pages = "335--341",
journal = "Bone",
issn = "8756-3282",
publisher = "Academic Press",
number = "3",

}

The T869C TGF Beta polymorphism is associated with fracture, bone mineral density, and calcaneal quantitative ultrasound in elderly women. / Dick, Ian; Devine, A.; Li, S.; Dhaliwal, S.S.; Prince, Richard.

In: Bone, Vol. 33, No. 3, 2003, p. 335-341.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The T869C TGF Beta polymorphism is associated with fracture, bone mineral density, and calcaneal quantitative ultrasound in elderly women

AU - Dick, Ian

AU - Devine, A.

AU - Li, S.

AU - Dhaliwal, S.S.

AU - Prince, Richard

PY - 2003

Y1 - 2003

N2 - Osteoporosis is a disease that is strongly genetically determined and polymorphisms present in a range of candidate genes may be involved. A number of previous studies have shown an association between the T869C functional polymorphism of the gene for transforming growth factor beta (TGF beta) and bone mineral density (BMD) and fracture, but these studies have been limited to relatively small studies of selected subjects. In a population-based study of 1337 white women over age 70 we examined the TGF beta T869 polymorphism in relation to BMD, calcaneal quantitative ultrasound (QUS), and prevalent and incident fracture. The TGF beta C allele was observed in 50% of the subjects and was associated with reduced hip BMD at all sites (2.8% total hip, 2.4% femoral neck, 2.6% intertrochanter, and 3.4% trochanter) compared to the TGF beta TT genotype. The TGF beta C allele was also associated with a reduction in the QUS parameters BUA, SOS, and stiffness of 0.87%, 0.26%, and 2.4%, respectively, compared to the TGF beta TT genotype. After adjustment for body mass index in an analysis of variance model, the effect of the TGF beta C allele remained significant at the total hip, the femoral neck, and the trochanter, and for the QUS SOS and stiffness parameters. The TGF beta C allele was associated with an increase in osteoporosis [T score less than or equal to -2.5 SD; odds ratio (OR) 2.07; 95% confidence interval (CI) 1.19-3.60] and prevalent fracture (1.37; 95% CI 1.06-1.75). After adjustment for BMD and QUS stiffness, the association of the TGF beta C allele with prevalent fracture was still present (OR 1.40; 95% CI 1.04-1.89), suggesting that the effect of the C allele on fracture was independent of a reduction in BMD and QUS stiffness. Subjects with normal BMD and a TGF beta C allele had an increased risk of incident fracture over 3 years compared to subjects with normal BMD and a TGF beta TT genotype (relative risk 3.95: 95% CI 1.52-10.29). This association was not found in osteopenic or in osteoporotic subjects, indicating a BMD-TGF beta C allele interaction in relation to the association of the TGF beta C allele with fracture risk. These findings are of potential clinical usefulness, as the TGF beta T869C genotype could be used, in conjunction with other genetic and clinical information, to determine an individual's risk of osteoporosis. (C) 2003 Elsevier Science (USA). All rights reserved.

AB - Osteoporosis is a disease that is strongly genetically determined and polymorphisms present in a range of candidate genes may be involved. A number of previous studies have shown an association between the T869C functional polymorphism of the gene for transforming growth factor beta (TGF beta) and bone mineral density (BMD) and fracture, but these studies have been limited to relatively small studies of selected subjects. In a population-based study of 1337 white women over age 70 we examined the TGF beta T869 polymorphism in relation to BMD, calcaneal quantitative ultrasound (QUS), and prevalent and incident fracture. The TGF beta C allele was observed in 50% of the subjects and was associated with reduced hip BMD at all sites (2.8% total hip, 2.4% femoral neck, 2.6% intertrochanter, and 3.4% trochanter) compared to the TGF beta TT genotype. The TGF beta C allele was also associated with a reduction in the QUS parameters BUA, SOS, and stiffness of 0.87%, 0.26%, and 2.4%, respectively, compared to the TGF beta TT genotype. After adjustment for body mass index in an analysis of variance model, the effect of the TGF beta C allele remained significant at the total hip, the femoral neck, and the trochanter, and for the QUS SOS and stiffness parameters. The TGF beta C allele was associated with an increase in osteoporosis [T score less than or equal to -2.5 SD; odds ratio (OR) 2.07; 95% confidence interval (CI) 1.19-3.60] and prevalent fracture (1.37; 95% CI 1.06-1.75). After adjustment for BMD and QUS stiffness, the association of the TGF beta C allele with prevalent fracture was still present (OR 1.40; 95% CI 1.04-1.89), suggesting that the effect of the C allele on fracture was independent of a reduction in BMD and QUS stiffness. Subjects with normal BMD and a TGF beta C allele had an increased risk of incident fracture over 3 years compared to subjects with normal BMD and a TGF beta TT genotype (relative risk 3.95: 95% CI 1.52-10.29). This association was not found in osteopenic or in osteoporotic subjects, indicating a BMD-TGF beta C allele interaction in relation to the association of the TGF beta C allele with fracture risk. These findings are of potential clinical usefulness, as the TGF beta T869C genotype could be used, in conjunction with other genetic and clinical information, to determine an individual's risk of osteoporosis. (C) 2003 Elsevier Science (USA). All rights reserved.

U2 - 10.1016/S8756-3282(03)00158-3

DO - 10.1016/S8756-3282(03)00158-3

M3 - Article

VL - 33

SP - 335

EP - 341

JO - Bone

JF - Bone

SN - 8756-3282

IS - 3

ER -