The role of labile dissolved organic carbon in influencing fluxes across the sediment-water interface: from marine systems to mine lakes

Deborah Read

    Research output: ThesisDoctoral Thesis

    260 Downloads (Pure)

    Abstract

    Sediment diagenesis in aquatic systems is usually understood to be controlled by the concentrations of both organic carbon and the oxidant. However, the concept that sediment respiration may be limited by the supply of organic carbon, even in systems with moderate concentrations of organic carbon in the water column, has yet to be fully explored. Typically we assume that a direct coupling between water column and sediment diagenesis processes occurs and the chemical evolution of porewater and surface water are linked through fluxes of chemical species across the sediment-water interface. While the dynamics of supply of particulate organic carbon (POC) to the sediments via plankton deposition and resuspension, has previously been examined, the fate of dissolved organic carbon (DOC) once in the sediments, has rarely been investigated. A series of experiments comprising batch tests, microcosms and sediment cores were conducted on sediment and water from four diverse field sites in which sediment respiration was considered to be carbon limited. Three sites were oligotrophic, acidic lakes and the fourth an oligotrophic coastal embayment. During each experiment dissolved organic carbon was added and measurements were undertaken of solutes that were considered participants in diagenetic processes. While each system differed in its chemical, biological and geological makeup, a key commonality was the rapid onset of anoxic conditions in the sediments irrespective of the overlying water oxygen concentrations, indicating lack of direct coupling between biogeochemical processes in the water column and sediments. Also, similar apparent DOC remineralisation rates were observed, measured solute fluxes after the addition of DOC indicated adherence to the ecological redox sequence, and increased ammonium concentrations were measured in the overlying waters of the acidic microcosms. In marine system experiments it was noted that diagenetic respiration, as indicated by decreasing concentrations of oxygen in the overlying water, increased rapidly after labile DOC was added. To explore the influence of geochemical processes on sediment respiration, a diagenetic model was tested against the laboratory data. The model was able to capture the rapid changes observed in the microcosms after addition of DOC in both the marine and acidic systems experiments. The model has the potential to serve as an essential tool for quantifying sediment organic matter decomposition and dissolved chemical fluxes. This work has focussed our attention on the control of DOC availability on sediment respiration and thus its ultimate control on solute fluxes across the sediment water interface. The results highlight the need to understand and quantify the supply of DOC to the sediment (as POC or already as the dissolved form), its transport through the sediment and its eventual remineralisation. This understanding is critical for improved management of aquatic systems, possibly even in systems where water column organic carbon is plentiful but sediment respiration is constrained by high organic carbon turnover rates in the water column and a resulting low flux of organic carbon to the sediment.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2008

    Fingerprint Dive into the research topics of 'The role of labile dissolved organic carbon in influencing fluxes across the sediment-water interface: from marine systems to mine lakes'. Together they form a unique fingerprint.

    Cite this