TY - JOUR
T1 - The role of anthocyanin and kaolinite in modifying cabbage leaves biochar for removal of potentially toxic elements and pharmaceutical from aqueous solution
AU - Karkoosh, Hasan
AU - Vithanage, Meththika
AU - Sarmah, Ajit K.
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/5/15
Y1 - 2023/5/15
N2 - We investigated the feasibility of two novel engineered biochar composites by pyrolyzing cabbage leaves at 350 °C after pre-treating them with anthocyanin, followed by a post-treatment with kaolinite for the removal of two potentially toxic elements (copper and lead) and a pharmaceutical compound, metoprolol. Results showed that the Kaolinite-biochar composite (KB) exhibited the highest adsorption capacity, 188.67 and 48.07 mg/g for Pb and Cu at pH 5, and the anthocyanin-biochar composite (AB) exhibited the highest adsorption capacity: 41.15 mg/g for metoprolol at pH 6, compared to raw biochar respectively. The enhancement of the adsorption of heavy metal and metoprolol by KB and AB was due to an increase in certain oxygen functional groups, as confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results. The pseudo-second order kinetic model, along with Langmuir isotherm model, best described the kinetic and the isotherms for Pb, Cu and metoprolol in KB and AB composites, respectively. FTIR, XPS, and zeta potential measurements indicated that the sorption mechanisms involved electrostatic interaction, ion exchange, and complexation for the metals, while electrostatic interaction, H-bonding, π-πinteraction, and hydrophobic bonding were postulated as the contributing mechanisms in the sorption process of metoprolol. Anthocyanin and kaolinite could potentially be considered as alternative sustainable materials for modifying raw biochar and remediating toxic elements and pharmaceuticals in aqueous media.
AB - We investigated the feasibility of two novel engineered biochar composites by pyrolyzing cabbage leaves at 350 °C after pre-treating them with anthocyanin, followed by a post-treatment with kaolinite for the removal of two potentially toxic elements (copper and lead) and a pharmaceutical compound, metoprolol. Results showed that the Kaolinite-biochar composite (KB) exhibited the highest adsorption capacity, 188.67 and 48.07 mg/g for Pb and Cu at pH 5, and the anthocyanin-biochar composite (AB) exhibited the highest adsorption capacity: 41.15 mg/g for metoprolol at pH 6, compared to raw biochar respectively. The enhancement of the adsorption of heavy metal and metoprolol by KB and AB was due to an increase in certain oxygen functional groups, as confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results. The pseudo-second order kinetic model, along with Langmuir isotherm model, best described the kinetic and the isotherms for Pb, Cu and metoprolol in KB and AB composites, respectively. FTIR, XPS, and zeta potential measurements indicated that the sorption mechanisms involved electrostatic interaction, ion exchange, and complexation for the metals, while electrostatic interaction, H-bonding, π-πinteraction, and hydrophobic bonding were postulated as the contributing mechanisms in the sorption process of metoprolol. Anthocyanin and kaolinite could potentially be considered as alternative sustainable materials for modifying raw biochar and remediating toxic elements and pharmaceuticals in aqueous media.
KW - Cabbage leaves biochar
KW - Clay composite
KW - Metoprolol
KW - Sorption kinetics
KW - Sustainable material
UR - http://www.scopus.com/inward/record.url?scp=85150298387&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2023.121435
DO - 10.1016/j.envpol.2023.121435
M3 - Article
C2 - 36924915
AN - SCOPUS:85150298387
SN - 0269-7491
VL - 325
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 121435
ER -