The Quantum Approximate Algorithm for Solving Traveling Salesman Problem

Yue Ruan, Samuel Marsh, Xilin Xue, Zhihao Liu, Jingbo Wang

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

The Quantum Approximate Optimization Algorithm (QAOA) is an algorithmic framework for finding approximate solutions to combinatorial optimization problems. It consists of interleaved unitary transformations induced by two operators labelled the mixing and problem Hamiltonians. To fit this framework, one needs to transform the original problem into a suitable form and embed it into these two Hamiltonians. In this paper, for the well-known NP-hard Traveling Salesman Problem (TSP), we encode its constraints into the mixing Hamiltonian rather than the conventional approach of adding penalty terms to the problem Hamiltonian. Moreover, we map edges (routes) connecting each pair of cities to qubits, which decreases the search space significantly in comparison to other approaches. As a result, our method can achieve a higher probability for the shortest round-trip route with only half the number of qubits consumed compared to IBM Q’s approach. We argue the formalization approach presented in this paper would lead to a generalized framework for finding, in the context of QAOA, high-quality approximate solutions to NP optimization problems.
Original languageEnglish
Pages (from-to)1237-1247
Number of pages11
JournalComputers, Materials and Continua
Volume63
Issue number3
DOIs
Publication statusPublished - Apr 2020

Fingerprint

Dive into the research topics of 'The Quantum Approximate Algorithm for Solving Traveling Salesman Problem'. Together they form a unique fingerprint.

Cite this