The Promise of PCSK9 and Lipoprotein(a) as Targets for Gene Silencing Therapies

Research output: Contribution to journalReview articlepeer-review

8 Citations (Scopus)

Abstract

Purpose: High plasma concentrations of LDL and lipoprotein(a) (Lp[a]) are independent and causal risk factors for atherosclerotic cardiovascular disease (ASCVD). There is an unmet therapeutic need for high-risk patients with elevated levels of LDL-C and/or Lp(a). Recent advances in the development of nucleic acids for gene silencing (ie, triantennary N-acetylgalactosamine conjugated antisense-oligonucleotides [ASOs] and small interfering RNA [siRNA]) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) and Lp(a) offer effective and sustainable therapies. Methods: Related articles in the English language were identified through a search for original and review articles in the PubMed database using the following key terms: cardiovascular disease, dyslipidemia, PCSK9 inhibitors, Lp(a), LDL-cholesterol, familial hypercholesterolemia, siRNA, and antisense oligonucleotide and clinical trials (either alone or in combination). Findings: Inclisiran, the most advanced siRNA-treatment targeting hepatic PCSK9, is well tolerated, producing a >30% reduction on LDL-C levels in randomized controlled trials. Pelacarsen is the most clinical advanced ASO, whereas olpasiran and SLN360 are the 2 siRNAs directed against the mRNA of the LPA gene. Evidence suggests that all Lp(a)-targeting agents are safe and well tolerated, with robust and sustained reduction in plasma Lp(a) concentration up to 70% to 90% in individuals with elevated Lp(a) levels. Implications: Cumulative evidence from clinical trials supports the value of ASO and siRNA therapies targeting the synthesis of PCSK9 and Lp(a) for lowering LDL-C and Lp(a) in patients with established ASCVD or high risk of ASCVD. Further research is needed to examine whether gene silencing therapy could improve clinical outcomes in patients with elevated LDL and/or Lp(a) levels. Confirmation of the tolerability and cost-effectiveness of long-term inhibition of PCSK9 and Lp(a) with this approach is essential.

Original languageEnglish
Pages (from-to)1034-1046
Number of pages13
JournalClinical Therapeutics
Volume45
Issue number11
Early online date29 Jul 2023
DOIs
Publication statusPublished - Nov 2023

Fingerprint

Dive into the research topics of 'The Promise of PCSK9 and Lipoprotein(a) as Targets for Gene Silencing Therapies'. Together they form a unique fingerprint.

Cite this