TY - GEN
T1 - The optimal distribution of electric-vehicle chargers across a city
AU - Liu, Chen
AU - Deng, Ke
AU - Li, Chaojie
AU - Li, Jianxin
AU - Li, Yanhua
AU - Luo, Jun
PY - 2016/7/2
Y1 - 2016/7/2
N2 - It has been estimated that the cumulative sales of Electric Vehicles (EVs) will be up to 5.9 million and the stock of EVs will be up to 20 million by 2020 [1]. As the number of EVs is expanding, there is a growing need for widely distributed, publicly accessible, EV charging facilities. The public EV Chargers (EVCs) are expected to be found and will be needed where there is on-street parking, at taxi stands, in parking lots at places of employment, hotels, airports, shopping centres, convenience shops, fast food restaurants, and coffee houses, etc. In this work, we aim to optimize the distribution of public EVCs across the city such that (i) the overall revenue generated by the EVCs is maximized, subject to (ii) the overall driver discomfort (e.g., queueing time) for EV charging is minimized. This is the first study on EVC distribution where EVCs are assumed to be installed in almost all regions across a city. The problem is formulated using a bilevel optimization model. We propose an alternating framework to solve it and have proved that a local minima is achievable. Moreover, this work introduces novel methods to extract information to understand the discomfort of petroleum car drivers, EV charging demands, parking time and parking fees across the city. The source data explored include the trajectories of taxis, the distribution of petroleum stations and various local features. The empirical study uses the real data sets from Shenzhen City, one of the largest cities in China. The extensive tests verify the superiority of the proposed bilevel optimization model in all aspects.
AB - It has been estimated that the cumulative sales of Electric Vehicles (EVs) will be up to 5.9 million and the stock of EVs will be up to 20 million by 2020 [1]. As the number of EVs is expanding, there is a growing need for widely distributed, publicly accessible, EV charging facilities. The public EV Chargers (EVCs) are expected to be found and will be needed where there is on-street parking, at taxi stands, in parking lots at places of employment, hotels, airports, shopping centres, convenience shops, fast food restaurants, and coffee houses, etc. In this work, we aim to optimize the distribution of public EVCs across the city such that (i) the overall revenue generated by the EVCs is maximized, subject to (ii) the overall driver discomfort (e.g., queueing time) for EV charging is minimized. This is the first study on EVC distribution where EVCs are assumed to be installed in almost all regions across a city. The problem is formulated using a bilevel optimization model. We propose an alternating framework to solve it and have proved that a local minima is achievable. Moreover, this work introduces novel methods to extract information to understand the discomfort of petroleum car drivers, EV charging demands, parking time and parking fees across the city. The source data explored include the trajectories of taxis, the distribution of petroleum stations and various local features. The empirical study uses the real data sets from Shenzhen City, one of the largest cities in China. The extensive tests verify the superiority of the proposed bilevel optimization model in all aspects.
KW - Bilevel Optimization
KW - Charging Station
KW - Data Mining
KW - Electrical Vehicle
UR - http://www.scopus.com/inward/record.url?scp=85014550100&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2016.142
DO - 10.1109/ICDM.2016.142
M3 - Conference paper
AN - SCOPUS:85014550100
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 261
EP - 270
BT - Proceedings - 16th IEEE International Conference on Data Mining, ICDM 2016
A2 - Bonchi, Francesco
A2 - Domingo-Ferrer, Josep
A2 - Baeza-Yates, Ricardo
A2 - Zhou, Zhi-Hua
A2 - Wu, Xindong
PB - IEEE, Institute of Electrical and Electronics Engineers
T2 - 16th IEEE International Conference on Data Mining, ICDM 2016
Y2 - 12 December 2016 through 15 December 2016
ER -