The linear stability of high-frequency flow in a torsionally oscillating cylinder

P.J. Blennerhassett, Andrew Bassom

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)

    Abstract

    The linear stability of the Stokes layer induced in a fluid contained within a long cylinder oscillating at high frequency about its longitudinal axis is investigated. The disturbance equations are derived using Floquet theory and the resulting system solved using pseudo-spectral methods. Both shear modes and axially periodic centripetal disturbance modes are examined and neutral stability curves and corresponding critical conditions for instability identified. For sufficiently small cylinder radius it is verified that the centripetal perturbations limit the stability of the motion but that in larger-radius configurations the shear modes associated with the Stokes layer take over this role. These results suggest a possible design, free of entry-length effects, for experiments intended to examine the breakdown of oscillatory boundary layers.
    Original languageEnglish
    Pages (from-to)491-505
    JournalJournal of Fluid Mechanics
    Volume576
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'The linear stability of high-frequency flow in a torsionally oscillating cylinder'. Together they form a unique fingerprint.

    Cite this