The involvement of the mitochondrial peroxiredoxin PRXIIF in defining physiological differences between orthodox and recalcitrant seeds of two Acer species

Ewelina Ratajczak, Elke Stroeher, Marie-Luise Oelze, Ewa M. Kalemba, Stanislawa Pukacka, Karl-Josef Dietz

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Norway maple (Acer platanoides L., orthodox) and sycamore (Acer pseudoplatanus L., recalcitrant) belong to the same genus and grow under similar climatic conditions, but their seeds differ in their tolerance to desiccation. The initial water content (WC) of the seeds used in this study was 50%, and they were dried to 40, 20 and 7%. The mitochondrial peroxiredoxin IIF (PRXIIF) was identified in seeds of both species by immunoblotting. Semiquantitative RT-PCR analyses indicated that the transcript level of PRXIIF in both types of seeds increased during different stages of desiccation and was higher in seeds of Norway maple than in sycamore. General proteome analyses showed important differences between orthodox and recalcitrant seeds. In sycamore seeds that had been desiccated to a 7% WC, the number of protein spots and the levels of those spots were lower than in desiccation-tolerant Norway maple seeds. Post-translational modifications of PRXIIF in seeds at a 50% WC were detected via 2D electrophoresis and subsequent western blot analysis. The detected shift in the pI values (+/- 0.3) in A. pseudoplatanus was possibly caused by phosphorylation because several potential phosphorylation sites were predicted in silico for that protein. The gene and amino acid sequences were obtained and aligned with known sequences of other plant PRXIIF genes and proteins. High values of sequence identity were noted between the PRXIIF protein sequences of Acer species, Populus trichocarpa Torr. & A. Gray and Arabidopsis thaliana (L.) Heynh. The involvement of PRXIIF in defining the physiological differences between desiccation-tolerant and desiccation-sensitive Acer seeds is discussed in the context of its role in mitochondrial redox homeostasis.

Original languageEnglish
Pages (from-to)1005-1017
Number of pages13
JournalFunctional Plant Biology
Volume40
Issue number10
DOIs
Publication statusPublished - 2013
Externally publishedYes

Cite this