The investigation of RANKL TNF-like core domain by truncation mutation

Jamie Tan

Research output: ThesisMaster's Thesis

43 Downloads (Pure)

Abstract

Osteoclasts are multinucleated cells found exclusively in bone and are derived from the haematopoietic cells of monocytes/macrophage lineage. The cell-to-cell interaction between osteoblastic/stromal cells and osteoclast precursor cells is necessary for osteoclastogenesis. Receptor Activator of NF-κB ligand (RANKL) was identified as a membrane-bound TNF ligand family member that is the ‘master’ cytokine expressed on osteoblastic/stromal cells, which stimulate osteoclastogenesis through cell-to-cell contact with osteoclast precursors. RANKL is considered to be a factor that is necessary and sufficient for the induction of osteoclastogenesis (Lacey, et al., 1998). RANKL is a type II transmembrane cytokine of the TNF ligand superfamily and has an active TNF-like core domain at the extracellular domain. This active TNF-like core domain is thought to be the region through which it binds to it’s active receptor, RANK, for the activation of signal transduction pathways for the initiation of processes leading to osteoclastogenesis (Lacey, et al., 1998; Li, et al., 1999). It was hypothesized that any change in the active TNF-like core domain might affect the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. Hence, this thesis sought to investigate the effects of changes in the active TNF-like core domain by truncation mutation on the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. A cDNA fragment encoding the full-length TNF-like core domain of rat RANKL (rRANKL) (aa160-318) was cloned into the bacterial expression pGEX vectors and stably expressed in Eschechia coli as a fusion protein with the C-terminus of glutathione S-transferase (GST). Four mutants (aa160-302, aa160-268, aa239-318 and aa246-318) were also generated by truncation mutation in the TNF-like core domain, and cloned into the pGEX vector to produce GST-rRANKL mutants. The proteins were over-expressed and affinity purified to 95% in purity.
Original languageEnglish
QualificationMasters
Publication statusUnpublished - 2003

Fingerprint

Osteogenesis
Mutation
Osteoclasts
Signal Transduction
Aptitude
Stromal Cells
Ligands
Glutathione Transferase
Cytokines
Protein C
Cell Communication
Monocytes
Complementary DNA
Macrophages
Bone and Bones
Membranes
Proteins

Cite this

@phdthesis{7ea2841e00374243b8db842cda6cc819,
title = "The investigation of RANKL TNF-like core domain by truncation mutation",
abstract = "Osteoclasts are multinucleated cells found exclusively in bone and are derived from the haematopoietic cells of monocytes/macrophage lineage. The cell-to-cell interaction between osteoblastic/stromal cells and osteoclast precursor cells is necessary for osteoclastogenesis. Receptor Activator of NF-κB ligand (RANKL) was identified as a membrane-bound TNF ligand family member that is the ‘master’ cytokine expressed on osteoblastic/stromal cells, which stimulate osteoclastogenesis through cell-to-cell contact with osteoclast precursors. RANKL is considered to be a factor that is necessary and sufficient for the induction of osteoclastogenesis (Lacey, et al., 1998). RANKL is a type II transmembrane cytokine of the TNF ligand superfamily and has an active TNF-like core domain at the extracellular domain. This active TNF-like core domain is thought to be the region through which it binds to it’s active receptor, RANK, for the activation of signal transduction pathways for the initiation of processes leading to osteoclastogenesis (Lacey, et al., 1998; Li, et al., 1999). It was hypothesized that any change in the active TNF-like core domain might affect the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. Hence, this thesis sought to investigate the effects of changes in the active TNF-like core domain by truncation mutation on the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. A cDNA fragment encoding the full-length TNF-like core domain of rat RANKL (rRANKL) (aa160-318) was cloned into the bacterial expression pGEX vectors and stably expressed in Eschechia coli as a fusion protein with the C-terminus of glutathione S-transferase (GST). Four mutants (aa160-302, aa160-268, aa239-318 and aa246-318) were also generated by truncation mutation in the TNF-like core domain, and cloned into the pGEX vector to produce GST-rRANKL mutants. The proteins were over-expressed and affinity purified to 95{\%} in purity.",
keywords = "Osteoclasts, Osteoclast inhibition, Bone resorption, Molecular aspects, Tumor necrosis factor, RANKL, TNF-like core domain, Osteoclastogenesis, RANKL mutants",
author = "Jamie Tan",
year = "2003",
language = "English",

}

The investigation of RANKL TNF-like core domain by truncation mutation. / Tan, Jamie.

2003.

Research output: ThesisMaster's Thesis

TY - THES

T1 - The investigation of RANKL TNF-like core domain by truncation mutation

AU - Tan, Jamie

PY - 2003

Y1 - 2003

N2 - Osteoclasts are multinucleated cells found exclusively in bone and are derived from the haematopoietic cells of monocytes/macrophage lineage. The cell-to-cell interaction between osteoblastic/stromal cells and osteoclast precursor cells is necessary for osteoclastogenesis. Receptor Activator of NF-κB ligand (RANKL) was identified as a membrane-bound TNF ligand family member that is the ‘master’ cytokine expressed on osteoblastic/stromal cells, which stimulate osteoclastogenesis through cell-to-cell contact with osteoclast precursors. RANKL is considered to be a factor that is necessary and sufficient for the induction of osteoclastogenesis (Lacey, et al., 1998). RANKL is a type II transmembrane cytokine of the TNF ligand superfamily and has an active TNF-like core domain at the extracellular domain. This active TNF-like core domain is thought to be the region through which it binds to it’s active receptor, RANK, for the activation of signal transduction pathways for the initiation of processes leading to osteoclastogenesis (Lacey, et al., 1998; Li, et al., 1999). It was hypothesized that any change in the active TNF-like core domain might affect the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. Hence, this thesis sought to investigate the effects of changes in the active TNF-like core domain by truncation mutation on the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. A cDNA fragment encoding the full-length TNF-like core domain of rat RANKL (rRANKL) (aa160-318) was cloned into the bacterial expression pGEX vectors and stably expressed in Eschechia coli as a fusion protein with the C-terminus of glutathione S-transferase (GST). Four mutants (aa160-302, aa160-268, aa239-318 and aa246-318) were also generated by truncation mutation in the TNF-like core domain, and cloned into the pGEX vector to produce GST-rRANKL mutants. The proteins were over-expressed and affinity purified to 95% in purity.

AB - Osteoclasts are multinucleated cells found exclusively in bone and are derived from the haematopoietic cells of monocytes/macrophage lineage. The cell-to-cell interaction between osteoblastic/stromal cells and osteoclast precursor cells is necessary for osteoclastogenesis. Receptor Activator of NF-κB ligand (RANKL) was identified as a membrane-bound TNF ligand family member that is the ‘master’ cytokine expressed on osteoblastic/stromal cells, which stimulate osteoclastogenesis through cell-to-cell contact with osteoclast precursors. RANKL is considered to be a factor that is necessary and sufficient for the induction of osteoclastogenesis (Lacey, et al., 1998). RANKL is a type II transmembrane cytokine of the TNF ligand superfamily and has an active TNF-like core domain at the extracellular domain. This active TNF-like core domain is thought to be the region through which it binds to it’s active receptor, RANK, for the activation of signal transduction pathways for the initiation of processes leading to osteoclastogenesis (Lacey, et al., 1998; Li, et al., 1999). It was hypothesized that any change in the active TNF-like core domain might affect the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. Hence, this thesis sought to investigate the effects of changes in the active TNF-like core domain by truncation mutation on the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. A cDNA fragment encoding the full-length TNF-like core domain of rat RANKL (rRANKL) (aa160-318) was cloned into the bacterial expression pGEX vectors and stably expressed in Eschechia coli as a fusion protein with the C-terminus of glutathione S-transferase (GST). Four mutants (aa160-302, aa160-268, aa239-318 and aa246-318) were also generated by truncation mutation in the TNF-like core domain, and cloned into the pGEX vector to produce GST-rRANKL mutants. The proteins were over-expressed and affinity purified to 95% in purity.

KW - Osteoclasts

KW - Osteoclast inhibition

KW - Bone resorption

KW - Molecular aspects

KW - Tumor necrosis factor

KW - RANKL

KW - TNF-like core domain

KW - Osteoclastogenesis

KW - RANKL mutants

M3 - Master's Thesis

ER -