TY - JOUR
T1 - The interaction between encapsulated Gd2O3 particles and polymeric matrix
T2 - The mechanism of fracture and X-ray attenuation properties
AU - La, Ly B.T.
AU - Leatherday, Christopher
AU - Qin, Peng
AU - Leong, Yee Kwong
AU - Hayward, Kevin J.
AU - Jiang, Bin
AU - Zhang, Lai Chang
PY - 2017/12/20
Y1 - 2017/12/20
N2 - This work sheds light on the relationship between the quantities of synthesized core shell Gd2O3 added to epoxy matrix and the mechanical and X-ray attenuation properties of particulate epoxy composite. Then, an optimal geometric design of non-lead based X-ray protective material with light weight per volume unit is prepared. A plateau with 28–30% increments in the value of fracture toughness (KIC) is observed with a specific addition of 0.08–0.1 volume fraction (φS) of Gd2O3 particles in pure epoxy. The same quantity of particles also optimally raises the critical strain energy release rate and Young's modulus of epoxy by approximately 22–24% and 18–25% respectively. A 16 mm thick sheet of fabricated filled composite at (φS) of 0.08 and 0.1 can shield greater than 95% and 99% respectively of a primary X-ray beam in the range of 60–120 kVp. At the same X-ray attenuation (99% attenuation), the specimen is 7, 8.5 and 16 times lighter than wood, glass, and concrete, respectively. At 0.5 mm Pb-equivalence, the composite also has 4.5–19.4% less weight per unit area than current commercial non-lead products.
AB - This work sheds light on the relationship between the quantities of synthesized core shell Gd2O3 added to epoxy matrix and the mechanical and X-ray attenuation properties of particulate epoxy composite. Then, an optimal geometric design of non-lead based X-ray protective material with light weight per volume unit is prepared. A plateau with 28–30% increments in the value of fracture toughness (KIC) is observed with a specific addition of 0.08–0.1 volume fraction (φS) of Gd2O3 particles in pure epoxy. The same quantity of particles also optimally raises the critical strain energy release rate and Young's modulus of epoxy by approximately 22–24% and 18–25% respectively. A 16 mm thick sheet of fabricated filled composite at (φS) of 0.08 and 0.1 can shield greater than 95% and 99% respectively of a primary X-ray beam in the range of 60–120 kVp. At the same X-ray attenuation (99% attenuation), the specimen is 7, 8.5 and 16 times lighter than wood, glass, and concrete, respectively. At 0.5 mm Pb-equivalence, the composite also has 4.5–19.4% less weight per unit area than current commercial non-lead products.
KW - Fracture toughness
KW - Particulate nanocomposite
KW - Surface modification
KW - X-ray attenuation
UR - http://www.scopus.com/inward/record.url?scp=85030161501&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfa.2017.09.038
DO - 10.1016/j.colsurfa.2017.09.038
M3 - Article
AN - SCOPUS:85030161501
SN - 0927-7757
VL - 535
SP - 175
EP - 183
JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects
JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects
ER -