The influence of depth and a subsea pipeline on fish assemblages and commercially fished species

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Knowledge of marine ecosystems that grow and reside on and around subsea oil and gas infrastructure is required to understand impacts of this offshore industry on the marine environment and inform decommissioning decisions. This study used baited remote underwater stereo-video systems (stereo-BRUVs) to compare species richness, fish abundance and size along 42.3 km of subsea pipeline and in adjacent areas of varying habitats. The pipeline is laid in an onshore-offshore direction enabling surveys to encompass a range of depths from 9 m nearshore out to 140 m depth offshore. Surveys off the pipeline were performed across this depth range and in an array of natural habitats (sand, macroalgae, coral reef) between 1 km and 40 km distance from the pipeline. A total of 14,953 fish were observed comprising 240 species (131 on the pipeline and 225 off-pipeline) and 59 families (39 on the pipeline and 56 off-pipeline) and the length of 8,610 fish were measured. The fish assemblage on and off the pipeline was similar in depths of <80 m. In depths beyond 80 m, the predominant habitat off-pipeline was sand and differences between fish assemblages on and off-pipeline were more pronounced. The pipeline was characterised by higher biomass and abundances of larger-bodied, commercially important species such as: Pristipomoides multidens (goldband snapper), Lutjanus malabaricus (saddletail snapper) and Lutjanus russellii (Moses' snapper) among others, and possessed a catch value 2-3 times higher per stereo-BRUV deployment than that of fish observed off-pipeline. Adjacent natural seabed habitats possessed higher abundances of Atule mate (yellowtail scad), Nemipterus spp. (threadfin bream) and Terapon jarbua (crescent grunter), species of no or low commercial value. This is the first published study to use stereo-BRUVs to report on the importance of subsea infrastructure to commercially important fishes over a depth gradient and increases our knowledge of the fish assemblage associated with subsea infrastructure off north-west Australia. These results provide a greater understanding of ecological and fisheries implications of decommissioning subsea infrastructure on the north-west shelf, and will help better inform decision-making on the fate of infrastructure at different depths.

Original languageEnglish
Pages (from-to)e0207703
JournalPLoS One
Volume13
Issue number11
DOIs
Publication statusPublished - 1 Jan 2018

Fingerprint

Fish
Fishes
Pipelines
Ecosystem
fish
infrastructure
snapper
Lutjanus
Coral Reefs
Seaweed
Fisheries
habitats
Nemipterus
Sand
Biomass
sand
Polynemidae
Decision Making
Industry
Oils

Cite this

@article{98aa4e587c56404994a29823b2bea9ce,
title = "The influence of depth and a subsea pipeline on fish assemblages and commercially fished species",
abstract = "Knowledge of marine ecosystems that grow and reside on and around subsea oil and gas infrastructure is required to understand impacts of this offshore industry on the marine environment and inform decommissioning decisions. This study used baited remote underwater stereo-video systems (stereo-BRUVs) to compare species richness, fish abundance and size along 42.3 km of subsea pipeline and in adjacent areas of varying habitats. The pipeline is laid in an onshore-offshore direction enabling surveys to encompass a range of depths from 9 m nearshore out to 140 m depth offshore. Surveys off the pipeline were performed across this depth range and in an array of natural habitats (sand, macroalgae, coral reef) between 1 km and 40 km distance from the pipeline. A total of 14,953 fish were observed comprising 240 species (131 on the pipeline and 225 off-pipeline) and 59 families (39 on the pipeline and 56 off-pipeline) and the length of 8,610 fish were measured. The fish assemblage on and off the pipeline was similar in depths of <80 m. In depths beyond 80 m, the predominant habitat off-pipeline was sand and differences between fish assemblages on and off-pipeline were more pronounced. The pipeline was characterised by higher biomass and abundances of larger-bodied, commercially important species such as: Pristipomoides multidens (goldband snapper), Lutjanus malabaricus (saddletail snapper) and Lutjanus russellii (Moses' snapper) among others, and possessed a catch value 2-3 times higher per stereo-BRUV deployment than that of fish observed off-pipeline. Adjacent natural seabed habitats possessed higher abundances of Atule mate (yellowtail scad), Nemipterus spp. (threadfin bream) and Terapon jarbua (crescent grunter), species of no or low commercial value. This is the first published study to use stereo-BRUVs to report on the importance of subsea infrastructure to commercially important fishes over a depth gradient and increases our knowledge of the fish assemblage associated with subsea infrastructure off north-west Australia. These results provide a greater understanding of ecological and fisheries implications of decommissioning subsea infrastructure on the north-west shelf, and will help better inform decision-making on the fate of infrastructure at different depths.",
author = "Todd Bond and Partridge, {Julian C.} and Taylor, {Michael D.} and Cooper, {Tim F.} and McLean, {Dianne L.}",
year = "2018",
month = "1",
day = "1",
doi = "10.1371/journal.pone.0207703",
language = "English",
volume = "13",
pages = "e0207703",
journal = "P L o S One",
issn = "1932-6203",
publisher = "Public Library of Science (PLoS)",
number = "11",

}

The influence of depth and a subsea pipeline on fish assemblages and commercially fished species. / Bond, Todd; Partridge, Julian C.; Taylor, Michael D.; Cooper, Tim F.; McLean, Dianne L.

In: PLoS One, Vol. 13, No. 11, 01.01.2018, p. e0207703.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The influence of depth and a subsea pipeline on fish assemblages and commercially fished species

AU - Bond, Todd

AU - Partridge, Julian C.

AU - Taylor, Michael D.

AU - Cooper, Tim F.

AU - McLean, Dianne L.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Knowledge of marine ecosystems that grow and reside on and around subsea oil and gas infrastructure is required to understand impacts of this offshore industry on the marine environment and inform decommissioning decisions. This study used baited remote underwater stereo-video systems (stereo-BRUVs) to compare species richness, fish abundance and size along 42.3 km of subsea pipeline and in adjacent areas of varying habitats. The pipeline is laid in an onshore-offshore direction enabling surveys to encompass a range of depths from 9 m nearshore out to 140 m depth offshore. Surveys off the pipeline were performed across this depth range and in an array of natural habitats (sand, macroalgae, coral reef) between 1 km and 40 km distance from the pipeline. A total of 14,953 fish were observed comprising 240 species (131 on the pipeline and 225 off-pipeline) and 59 families (39 on the pipeline and 56 off-pipeline) and the length of 8,610 fish were measured. The fish assemblage on and off the pipeline was similar in depths of <80 m. In depths beyond 80 m, the predominant habitat off-pipeline was sand and differences between fish assemblages on and off-pipeline were more pronounced. The pipeline was characterised by higher biomass and abundances of larger-bodied, commercially important species such as: Pristipomoides multidens (goldband snapper), Lutjanus malabaricus (saddletail snapper) and Lutjanus russellii (Moses' snapper) among others, and possessed a catch value 2-3 times higher per stereo-BRUV deployment than that of fish observed off-pipeline. Adjacent natural seabed habitats possessed higher abundances of Atule mate (yellowtail scad), Nemipterus spp. (threadfin bream) and Terapon jarbua (crescent grunter), species of no or low commercial value. This is the first published study to use stereo-BRUVs to report on the importance of subsea infrastructure to commercially important fishes over a depth gradient and increases our knowledge of the fish assemblage associated with subsea infrastructure off north-west Australia. These results provide a greater understanding of ecological and fisheries implications of decommissioning subsea infrastructure on the north-west shelf, and will help better inform decision-making on the fate of infrastructure at different depths.

AB - Knowledge of marine ecosystems that grow and reside on and around subsea oil and gas infrastructure is required to understand impacts of this offshore industry on the marine environment and inform decommissioning decisions. This study used baited remote underwater stereo-video systems (stereo-BRUVs) to compare species richness, fish abundance and size along 42.3 km of subsea pipeline and in adjacent areas of varying habitats. The pipeline is laid in an onshore-offshore direction enabling surveys to encompass a range of depths from 9 m nearshore out to 140 m depth offshore. Surveys off the pipeline were performed across this depth range and in an array of natural habitats (sand, macroalgae, coral reef) between 1 km and 40 km distance from the pipeline. A total of 14,953 fish were observed comprising 240 species (131 on the pipeline and 225 off-pipeline) and 59 families (39 on the pipeline and 56 off-pipeline) and the length of 8,610 fish were measured. The fish assemblage on and off the pipeline was similar in depths of <80 m. In depths beyond 80 m, the predominant habitat off-pipeline was sand and differences between fish assemblages on and off-pipeline were more pronounced. The pipeline was characterised by higher biomass and abundances of larger-bodied, commercially important species such as: Pristipomoides multidens (goldband snapper), Lutjanus malabaricus (saddletail snapper) and Lutjanus russellii (Moses' snapper) among others, and possessed a catch value 2-3 times higher per stereo-BRUV deployment than that of fish observed off-pipeline. Adjacent natural seabed habitats possessed higher abundances of Atule mate (yellowtail scad), Nemipterus spp. (threadfin bream) and Terapon jarbua (crescent grunter), species of no or low commercial value. This is the first published study to use stereo-BRUVs to report on the importance of subsea infrastructure to commercially important fishes over a depth gradient and increases our knowledge of the fish assemblage associated with subsea infrastructure off north-west Australia. These results provide a greater understanding of ecological and fisheries implications of decommissioning subsea infrastructure on the north-west shelf, and will help better inform decision-making on the fate of infrastructure at different depths.

UR - http://www.scopus.com/inward/record.url?scp=85057166550&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0207703

DO - 10.1371/journal.pone.0207703

M3 - Article

VL - 13

SP - e0207703

JO - P L o S One

JF - P L o S One

SN - 1932-6203

IS - 11

ER -