The independent effects of purified EPA and DHA supplementation on cardiovascular risk in treated-hypertensive type 2 diabetic individuals

Richard Woodman

Research output: ThesisDoctoral Thesis

200 Downloads (Pure)

Abstract

[Formulae and special characters can only be approximated here. Please see the pdf version of the Abtract for an accurate reproduction.] Type 2 diabetes at least doubles the risk of cardiovascular disease. This can partly be explained by the increased prevalence of risk factors such as hypertension, dyslipidaemia and obesity. However, the underlying abnormality of insulin resistance and the presence of more recently identified risk factors including endothelial dysfunction, increased inflammation, and increased oxidative stress might also contribute towards the heightened cardiovascular risk. Fish oil, which contains eicosapentaenoic acid (EPA, 20:5 n-3), has wide-ranging beneficial effects on these and other abnormalities, and has reduced cardiovascular mortality in secondary prevention studies. Animal and human studies have recently established that in addition to EPA, docosahexaenoic acid (DHA, 22:6 n-3) also has beneficial effects, and furthermore, may have less detrimental effects than EPA on glycaemic control which has worsened in some fish and fish oil studies involving Type 2 diabetic subjects. Study 1 : This intervention study aimed to determine the independent effects of EPA and DHA on cardiovascular risk factors and glycaemic control in individuals with Type 2 diabetes receiving treatment for hypertension. In a double-blind placebo-controlled trial of parallel design, 59 subjects in good to moderate glycaemic control (HbA1c <9%) were recruited from media advertising and randomised to 4 g/day of EPA, DHA or olive oil (placebo) for 6 weeks. Thirty-nine men and 12 post-menopausal women aged 61.2±1.2 yrs completed the study. Relative to placebo, and with Bonferroni adjustments for multiple comparisons, serum triglycerides fell by 19% (p=0.022) and 15% (p=0.022) in the EPA and DHA groups respectively. There were no changes in serum total cholesterol, or LDL- and HDL-cholesterol, although HDL2-cholesterol increased 16% with EPA (p=0.026) and 12% with DHA (p=0.05). HDL3-cholesterol fell by 11% (p=0.026) with EPA supplementation and LDL particle size increased by 0.26±0.10 nm (p=0.02) with DHA. Urinary F2-isoprostanes, an in-vivo marker of oxidative stress was reduced by 19% following EPA (p=0.034) and by 20% following DHA.
Original languageEnglish
QualificationDoctor of Philosophy
Publication statusUnpublished - 2003

Fingerprint

Dive into the research topics of 'The independent effects of purified EPA and DHA supplementation on cardiovascular risk in treated-hypertensive type 2 diabetic individuals'. Together they form a unique fingerprint.

Cite this