The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans

Trevor Mori, R.J. Woodman

    Research output: Contribution to journalArticle

    202 Citations (Scopus)

    Abstract

    Purpose of review This review details the independent effects of purified eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. We report data from the recent literature and our own controlled clinical trials which compared the independent effects of these fatty acids in individuals at increased risk of cardiovascular disease, namely overweight hyperlipidaemic men and treated-hypertensive, type 2 diabetic men and women. We discuss the biological effects of these fatty acids and the potential mechanisms through which they may affect cardiovascular disease risk factors.Recent findings A cardioprotective effect for omega 3 fatty acids is supported by prospective studies demonstrating an inverse association between fish intake and coronary heart disease mortality. Data from secondary prevention trials support a reduction in ventricular fibrillation as a primary mechanism for the decreased incidence of myocardial infarction. Clinical trials and experimental studies have shown that omega 3 fatty acids have many other potentially important antiatherogenic and antithrombotic effects. Omega-3 fatty acids lower blood pressure and heart rate, improve dyslipidaemia, reduce inflammation, and improve vascular and platelet function. These favourable effects have until recently been primarily attributed to the w3 fatty acid eicosapentaenoic acid, which is present in large amounts in fish oil. Controlled studies in humans now demonstrate that docosahexaenoic acid, although often present in lower quantities, has equally important anti-arrhythmic, anti-thrombotic and antiatherogenic effects.Summary Available evidence strongly suggests that eicosapentaenoic acid and docosahexaenoic acid have differing haemodynamic and anti-atherogenic properties. The effects of the two fatty acids may also differ depending on the target population.
    Original languageEnglish
    Pages (from-to)95-104
    JournalCurrent Opinion in Clinical Nutrition and Metabolic Care
    Volume9
    Issue number2
    DOIs
    Publication statusPublished - 2006

    Fingerprint Dive into the research topics of 'The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans'. Together they form a unique fingerprint.

    Cite this