TY - JOUR
T1 - The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil
AU - Wijesekara, Hasintha
AU - Bolan, Nanthi S.
AU - Thangavel, Ramesh
AU - Seshadri, Balaji
AU - Surapaneni, Aravind
AU - Saint, Christopher
AU - Hetherington, Chris
AU - Matthews, Peter
AU - Vithanage, Meththika
PY - 2017
Y1 - 2017
N2 - A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha−1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ13C and δ15N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0–15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ13C, and enriched δ15N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture.
AB - A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha−1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ13C and δ15N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0–15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ13C, and enriched δ15N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture.
KW - Biosolids
KW - Carbon fractions
KW - Climate change mitigation
KW - Soil organic carbon
KW - Soil δC
KW - Soil δN
UR - http://www.scopus.com/inward/record.url?scp=85029935704&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2017.09.090
DO - 10.1016/j.chemosphere.2017.09.090
M3 - Article
C2 - 28961541
AN - SCOPUS:85029935704
VL - 189
SP - 565
EP - 573
JO - Chemosphere
JF - Chemosphere
SN - 0045-6535
ER -