The fluid evolution of the Nimbus Ag-Zn-(Au) deposit: An interplay between mantle plume and microbial activity

Stefano Caruso, Marco L. Fiorentini, Steven P. Hollis, Crystal LaFlamme, Raphael J. Baumgartner, Jeffrey A. Steadman, Dany Savard

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The Nimbus Ag-Zn-(Au) volcanic-hosted massive sulfide (VHMS) deposit represents an exceptional orebody in the Yilgarn Craton of Western Australia. It is located in a zone of juvenile crust running N-S through the Eastern Goldfields Superterrane. However, unlike most other VHMS occurrences associated with the 2690–2680 Ma rift sequence (Teutonic Bore, Jaguar, Bentley, Erayinia), it is hosted by the ca. 2705 Ma plume-related stratigraphy, which is more typically associated with komatiite-hosted nickel-sulfide mineralization. The Nimbus deposit displays hybrid VHMS-epithermal characteristics resulting from low temperature and shallow water conditions, which developed a quartz-carbonate-sericite dominated alteration assemblage in the dacite host rocks. Sulfide mineralization comprises pyrite, sphalerite, galena, arsenopyrite, Ag-Sb-Pb-Bi sulfosalts, and rare chalcopyrite. In this study, we applied a combination of in-situ analytical techniques to monitor the evolving sulfur isotope signature of the mineralizing fluids, and propose that the Nimbus VHMS deposit developed as a result of a bimodal fluid history. In the first stage, the hydrothermal system – powered by plume-related magmatism – deposited a series of barren pyrite lenses with colloform textures. Their variable but consistently negative mass-independent sulfur isotope fractionation signature (Δ33S = −0.81%) reflects the interaction between mantle-derived magmatic fluids and Archean seawater. The ubiquitous presence of carbon-rich porous textures and the remnants of carbonaceous “nests” in colloform pyrite also indicate a significant contribution of microbial sulfate reducers during the incipient stages of sulfide precipitation. The gradual formation of colloform lenses eventually sealed the hydrothermal system establishing a physical barrier that limited the interaction with seawater. This process promoted the onset of higher temperature and pressure conditions required to form the high-grade Zn-Ag mineralization, sourcing sulfur and fluids largely from a magmatic reservoir (Δ33S = +0.09%). Whereas the identification of a predominantly magmatic sulfur source is supported by sulfur isotope signatures, the recognition of a magmatic origin of the fluid may only be inferred indirectly. It is consistent with the observed quartz-sericite alteration style and the proposed mechanism of sulfide deposition via decompression, which does not require any interaction with seawater. The trace element distribution of the ore-related sulfides also supports a closed hydrothermal system developed through multiple fluid pulses. Indeed, this ore-forming scenario is commonly favored by high confining pressures, which at Nimbus were established following the deposition of the colloform pyrite lenses that progressively sealed the hydrothermal system creating the favorable conditions for mineralization.

Original languageEnglish
Pages (from-to)211-229
Number of pages19
JournalPrecambrian Research
Volume317
DOIs
Publication statusPublished - 1 Oct 2018

Fingerprint

Sulfides
mantle plume
microbial activity
Deposits
massive sulfide
hydrothermal system
Sulfur Isotopes
sulfide
Fluids
fluid
pyrite
sulfur isotope
mineralization
Seawater
seawater
Lenses
Quartz
plume
texture
Sulfur

Cite this

@article{51e26b235a7f4dbc81b72488d9a58849,
title = "The fluid evolution of the Nimbus Ag-Zn-(Au) deposit: An interplay between mantle plume and microbial activity",
abstract = "The Nimbus Ag-Zn-(Au) volcanic-hosted massive sulfide (VHMS) deposit represents an exceptional orebody in the Yilgarn Craton of Western Australia. It is located in a zone of juvenile crust running N-S through the Eastern Goldfields Superterrane. However, unlike most other VHMS occurrences associated with the 2690–2680 Ma rift sequence (Teutonic Bore, Jaguar, Bentley, Erayinia), it is hosted by the ca. 2705 Ma plume-related stratigraphy, which is more typically associated with komatiite-hosted nickel-sulfide mineralization. The Nimbus deposit displays hybrid VHMS-epithermal characteristics resulting from low temperature and shallow water conditions, which developed a quartz-carbonate-sericite dominated alteration assemblage in the dacite host rocks. Sulfide mineralization comprises pyrite, sphalerite, galena, arsenopyrite, Ag-Sb-Pb-Bi sulfosalts, and rare chalcopyrite. In this study, we applied a combination of in-situ analytical techniques to monitor the evolving sulfur isotope signature of the mineralizing fluids, and propose that the Nimbus VHMS deposit developed as a result of a bimodal fluid history. In the first stage, the hydrothermal system – powered by plume-related magmatism – deposited a series of barren pyrite lenses with colloform textures. Their variable but consistently negative mass-independent sulfur isotope fractionation signature (Δ33S = −0.81{\%}) reflects the interaction between mantle-derived magmatic fluids and Archean seawater. The ubiquitous presence of carbon-rich porous textures and the remnants of carbonaceous “nests” in colloform pyrite also indicate a significant contribution of microbial sulfate reducers during the incipient stages of sulfide precipitation. The gradual formation of colloform lenses eventually sealed the hydrothermal system establishing a physical barrier that limited the interaction with seawater. This process promoted the onset of higher temperature and pressure conditions required to form the high-grade Zn-Ag mineralization, sourcing sulfur and fluids largely from a magmatic reservoir (Δ33S = +0.09{\%}). Whereas the identification of a predominantly magmatic sulfur source is supported by sulfur isotope signatures, the recognition of a magmatic origin of the fluid may only be inferred indirectly. It is consistent with the observed quartz-sericite alteration style and the proposed mechanism of sulfide deposition via decompression, which does not require any interaction with seawater. The trace element distribution of the ore-related sulfides also supports a closed hydrothermal system developed through multiple fluid pulses. Indeed, this ore-forming scenario is commonly favored by high confining pressures, which at Nimbus were established following the deposition of the colloform pyrite lenses that progressively sealed the hydrothermal system creating the favorable conditions for mineralization.",
keywords = "Archean, Early life, Mantle plume, Multiple sulfur isotopes, VHMS",
author = "Stefano Caruso and Fiorentini, {Marco L.} and Hollis, {Steven P.} and Crystal LaFlamme and Baumgartner, {Raphael J.} and Steadman, {Jeffrey A.} and Dany Savard",
year = "2018",
month = "10",
day = "1",
doi = "10.1016/j.precamres.2018.08.012",
language = "English",
volume = "317",
pages = "211--229",
journal = "Precambrian Research",
issn = "0301-9268",
publisher = "Pergamon",

}

The fluid evolution of the Nimbus Ag-Zn-(Au) deposit : An interplay between mantle plume and microbial activity. / Caruso, Stefano; Fiorentini, Marco L.; Hollis, Steven P.; LaFlamme, Crystal; Baumgartner, Raphael J.; Steadman, Jeffrey A.; Savard, Dany.

In: Precambrian Research, Vol. 317, 01.10.2018, p. 211-229.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The fluid evolution of the Nimbus Ag-Zn-(Au) deposit

T2 - An interplay between mantle plume and microbial activity

AU - Caruso, Stefano

AU - Fiorentini, Marco L.

AU - Hollis, Steven P.

AU - LaFlamme, Crystal

AU - Baumgartner, Raphael J.

AU - Steadman, Jeffrey A.

AU - Savard, Dany

PY - 2018/10/1

Y1 - 2018/10/1

N2 - The Nimbus Ag-Zn-(Au) volcanic-hosted massive sulfide (VHMS) deposit represents an exceptional orebody in the Yilgarn Craton of Western Australia. It is located in a zone of juvenile crust running N-S through the Eastern Goldfields Superterrane. However, unlike most other VHMS occurrences associated with the 2690–2680 Ma rift sequence (Teutonic Bore, Jaguar, Bentley, Erayinia), it is hosted by the ca. 2705 Ma plume-related stratigraphy, which is more typically associated with komatiite-hosted nickel-sulfide mineralization. The Nimbus deposit displays hybrid VHMS-epithermal characteristics resulting from low temperature and shallow water conditions, which developed a quartz-carbonate-sericite dominated alteration assemblage in the dacite host rocks. Sulfide mineralization comprises pyrite, sphalerite, galena, arsenopyrite, Ag-Sb-Pb-Bi sulfosalts, and rare chalcopyrite. In this study, we applied a combination of in-situ analytical techniques to monitor the evolving sulfur isotope signature of the mineralizing fluids, and propose that the Nimbus VHMS deposit developed as a result of a bimodal fluid history. In the first stage, the hydrothermal system – powered by plume-related magmatism – deposited a series of barren pyrite lenses with colloform textures. Their variable but consistently negative mass-independent sulfur isotope fractionation signature (Δ33S = −0.81%) reflects the interaction between mantle-derived magmatic fluids and Archean seawater. The ubiquitous presence of carbon-rich porous textures and the remnants of carbonaceous “nests” in colloform pyrite also indicate a significant contribution of microbial sulfate reducers during the incipient stages of sulfide precipitation. The gradual formation of colloform lenses eventually sealed the hydrothermal system establishing a physical barrier that limited the interaction with seawater. This process promoted the onset of higher temperature and pressure conditions required to form the high-grade Zn-Ag mineralization, sourcing sulfur and fluids largely from a magmatic reservoir (Δ33S = +0.09%). Whereas the identification of a predominantly magmatic sulfur source is supported by sulfur isotope signatures, the recognition of a magmatic origin of the fluid may only be inferred indirectly. It is consistent with the observed quartz-sericite alteration style and the proposed mechanism of sulfide deposition via decompression, which does not require any interaction with seawater. The trace element distribution of the ore-related sulfides also supports a closed hydrothermal system developed through multiple fluid pulses. Indeed, this ore-forming scenario is commonly favored by high confining pressures, which at Nimbus were established following the deposition of the colloform pyrite lenses that progressively sealed the hydrothermal system creating the favorable conditions for mineralization.

AB - The Nimbus Ag-Zn-(Au) volcanic-hosted massive sulfide (VHMS) deposit represents an exceptional orebody in the Yilgarn Craton of Western Australia. It is located in a zone of juvenile crust running N-S through the Eastern Goldfields Superterrane. However, unlike most other VHMS occurrences associated with the 2690–2680 Ma rift sequence (Teutonic Bore, Jaguar, Bentley, Erayinia), it is hosted by the ca. 2705 Ma plume-related stratigraphy, which is more typically associated with komatiite-hosted nickel-sulfide mineralization. The Nimbus deposit displays hybrid VHMS-epithermal characteristics resulting from low temperature and shallow water conditions, which developed a quartz-carbonate-sericite dominated alteration assemblage in the dacite host rocks. Sulfide mineralization comprises pyrite, sphalerite, galena, arsenopyrite, Ag-Sb-Pb-Bi sulfosalts, and rare chalcopyrite. In this study, we applied a combination of in-situ analytical techniques to monitor the evolving sulfur isotope signature of the mineralizing fluids, and propose that the Nimbus VHMS deposit developed as a result of a bimodal fluid history. In the first stage, the hydrothermal system – powered by plume-related magmatism – deposited a series of barren pyrite lenses with colloform textures. Their variable but consistently negative mass-independent sulfur isotope fractionation signature (Δ33S = −0.81%) reflects the interaction between mantle-derived magmatic fluids and Archean seawater. The ubiquitous presence of carbon-rich porous textures and the remnants of carbonaceous “nests” in colloform pyrite also indicate a significant contribution of microbial sulfate reducers during the incipient stages of sulfide precipitation. The gradual formation of colloform lenses eventually sealed the hydrothermal system establishing a physical barrier that limited the interaction with seawater. This process promoted the onset of higher temperature and pressure conditions required to form the high-grade Zn-Ag mineralization, sourcing sulfur and fluids largely from a magmatic reservoir (Δ33S = +0.09%). Whereas the identification of a predominantly magmatic sulfur source is supported by sulfur isotope signatures, the recognition of a magmatic origin of the fluid may only be inferred indirectly. It is consistent with the observed quartz-sericite alteration style and the proposed mechanism of sulfide deposition via decompression, which does not require any interaction with seawater. The trace element distribution of the ore-related sulfides also supports a closed hydrothermal system developed through multiple fluid pulses. Indeed, this ore-forming scenario is commonly favored by high confining pressures, which at Nimbus were established following the deposition of the colloform pyrite lenses that progressively sealed the hydrothermal system creating the favorable conditions for mineralization.

KW - Archean

KW - Early life

KW - Mantle plume

KW - Multiple sulfur isotopes

KW - VHMS

UR - http://www.scopus.com/inward/record.url?scp=85053373829&partnerID=8YFLogxK

U2 - 10.1016/j.precamres.2018.08.012

DO - 10.1016/j.precamres.2018.08.012

M3 - Article

VL - 317

SP - 211

EP - 229

JO - Precambrian Research

JF - Precambrian Research

SN - 0301-9268

ER -