The emerging role of Hippo signaling pathway in regulating osteoclast formation

Wanlei Yang, Weiqi Han, An Qin, Ziyi Wang, Jiake Xu, Yu Qian

Research output: Contribution to journalReview articlepeer-review

76 Citations (Scopus)

Abstract

A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.

Original languageEnglish
Pages (from-to)4606-4617
Number of pages12
JournalJournal of Cellular Physiology
Volume233
Issue number6
DOIs
Publication statusPublished - 1 Jun 2018

Fingerprint

Dive into the research topics of 'The emerging role of Hippo signaling pathway in regulating osteoclast formation'. Together they form a unique fingerprint.

Cite this