The effects of high energy milling on the performance of silicate rock fertilizers

Joko Priyono

Research output: ThesisDoctoral Thesis

219 Downloads (Pure)

Abstract

[Truncated abstract] Many researchers have proposed the use of silicate rock fertilizers (SRFs) as alternatives to chemical fertilizers. However, the application of SRFs in modern agricultural practices is limited due mainly to the slow release of plant-nutrient elements from SRFs and consequently many tonnes/ha of SRFs may need to be applied. Simple and inexpensive methods of modifying the physicochemical properties of SRFs are needed to improve the agronomic effectiveness of SRFs. This thesis is focused on the evaluation of high-energy milling to produce superfine particles to improve the effectiveness of mafic (basalt and dolerite) and felsic (gneiss and K-feldspar) rocks for use as fertilizers. The ground mafic rocks are for use as Ca and Mg fertilizers and the ground felsic rocks as K fertilizers. Laboratory and glasshouse experiments were conducted with several potential SRFs. In laboratory experiments, initially milled rocks (Ø< 250 μm for basalt, dolerite, and gneiss; Ø < 150 μm for K-feldspar) were further milled with a ball mill (Spex-8000) for 10, 30, 60, 90, and 120 min under dry and wet (rock/water ratio = 1/3) conditions. To investigate possible reaction between constituents, other subsamples of initially milled basalt, dolerite, and gneiss were added to reagent grade NaCl or KCl (4.5 g rock + 0.5 g NaCl or KCl) and milled for 120 min under dry and wet conditions. Basalt and dolerite were also mixed with K-feldspar at a ratio of 1 : 1 and milled for 120 min under dry and wet conditions. For use in the glasshouse experiment, the initially milled rocks were further milled with a vertical stirred ball mill for 1 h in a dry condition. The elemental and mineralogical compositions of the SRFs were determined using XRF and XRD. Effects of milling on major physicochemical properties of milled rocks were determined, including particle size (Malvern Mastersizer), surface area (BET-N2), quantities of amorphous constituents (XRD, oxalic acid-oxalate extraction, TEM), extractable cations (1M CH3COONH4 pH 7), pHH2O, and electric conductivity. Dissolution kinetics in 0.01M acetic-citric acids (for 56 days) and soil (for 10 months) were determined. Based on the results of these laboratory experiments, a glasshouse experiment was carried out for 12 months to evaluate the effects of SRF application on growth and nutrient uptake of ryegrass grown on several soils. Milling reduced particle size, enhanced amorphism, and increased the release of structural cations from the rocks, with the effects due to dry milling being greater than for wet milling. The optimum milling times which produced maximum amounts of exchangeable cations (Na, K, Ca, and Mg) were 30 - 90 min, depending on rock type. The use of NaCl and KCl as milling additives did not enhance the properties of the SRF
Original languageEnglish
QualificationDoctor of Philosophy
Publication statusUnpublished - 2005

Fingerprint

silicate
fertilizer
rock
energy
diabase
basalt
gneiss
effect
feldspar
cation
physicochemical property
mill
X-ray diffraction
particle size
experiment
oxalic acid
felsic rock
citric acid
nutrient uptake
oxalate

Cite this

@phdthesis{719bb0d9957d43dd8318331e77a81d82,
title = "The effects of high energy milling on the performance of silicate rock fertilizers",
abstract = "[Truncated abstract] Many researchers have proposed the use of silicate rock fertilizers (SRFs) as alternatives to chemical fertilizers. However, the application of SRFs in modern agricultural practices is limited due mainly to the slow release of plant-nutrient elements from SRFs and consequently many tonnes/ha of SRFs may need to be applied. Simple and inexpensive methods of modifying the physicochemical properties of SRFs are needed to improve the agronomic effectiveness of SRFs. This thesis is focused on the evaluation of high-energy milling to produce superfine particles to improve the effectiveness of mafic (basalt and dolerite) and felsic (gneiss and K-feldspar) rocks for use as fertilizers. The ground mafic rocks are for use as Ca and Mg fertilizers and the ground felsic rocks as K fertilizers. Laboratory and glasshouse experiments were conducted with several potential SRFs. In laboratory experiments, initially milled rocks ({\O}< 250 μm for basalt, dolerite, and gneiss; {\O} < 150 μm for K-feldspar) were further milled with a ball mill (Spex-8000) for 10, 30, 60, 90, and 120 min under dry and wet (rock/water ratio = 1/3) conditions. To investigate possible reaction between constituents, other subsamples of initially milled basalt, dolerite, and gneiss were added to reagent grade NaCl or KCl (4.5 g rock + 0.5 g NaCl or KCl) and milled for 120 min under dry and wet conditions. Basalt and dolerite were also mixed with K-feldspar at a ratio of 1 : 1 and milled for 120 min under dry and wet conditions. For use in the glasshouse experiment, the initially milled rocks were further milled with a vertical stirred ball mill for 1 h in a dry condition. The elemental and mineralogical compositions of the SRFs were determined using XRF and XRD. Effects of milling on major physicochemical properties of milled rocks were determined, including particle size (Malvern Mastersizer), surface area (BET-N2), quantities of amorphous constituents (XRD, oxalic acid-oxalate extraction, TEM), extractable cations (1M CH3COONH4 pH 7), pHH2O, and electric conductivity. Dissolution kinetics in 0.01M acetic-citric acids (for 56 days) and soil (for 10 months) were determined. Based on the results of these laboratory experiments, a glasshouse experiment was carried out for 12 months to evaluate the effects of SRF application on growth and nutrient uptake of ryegrass grown on several soils. Milling reduced particle size, enhanced amorphism, and increased the release of structural cations from the rocks, with the effects due to dry milling being greater than for wet milling. The optimum milling times which produced maximum amounts of exchangeable cations (Na, K, Ca, and Mg) were 30 - 90 min, depending on rock type. The use of NaCl and KCl as milling additives did not enhance the properties of the SRF",
keywords = "Rocks, Siliceous, Fertilizers, Silicate minerals, Silicate rock fertilizers, Mafic rocks, High energy milling, Felsic rocks, Effectiveness",
author = "Joko Priyono",
year = "2005",
language = "English",

}

The effects of high energy milling on the performance of silicate rock fertilizers. / Priyono, Joko.

2005.

Research output: ThesisDoctoral Thesis

TY - THES

T1 - The effects of high energy milling on the performance of silicate rock fertilizers

AU - Priyono, Joko

PY - 2005

Y1 - 2005

N2 - [Truncated abstract] Many researchers have proposed the use of silicate rock fertilizers (SRFs) as alternatives to chemical fertilizers. However, the application of SRFs in modern agricultural practices is limited due mainly to the slow release of plant-nutrient elements from SRFs and consequently many tonnes/ha of SRFs may need to be applied. Simple and inexpensive methods of modifying the physicochemical properties of SRFs are needed to improve the agronomic effectiveness of SRFs. This thesis is focused on the evaluation of high-energy milling to produce superfine particles to improve the effectiveness of mafic (basalt and dolerite) and felsic (gneiss and K-feldspar) rocks for use as fertilizers. The ground mafic rocks are for use as Ca and Mg fertilizers and the ground felsic rocks as K fertilizers. Laboratory and glasshouse experiments were conducted with several potential SRFs. In laboratory experiments, initially milled rocks (Ø< 250 μm for basalt, dolerite, and gneiss; Ø < 150 μm for K-feldspar) were further milled with a ball mill (Spex-8000) for 10, 30, 60, 90, and 120 min under dry and wet (rock/water ratio = 1/3) conditions. To investigate possible reaction between constituents, other subsamples of initially milled basalt, dolerite, and gneiss were added to reagent grade NaCl or KCl (4.5 g rock + 0.5 g NaCl or KCl) and milled for 120 min under dry and wet conditions. Basalt and dolerite were also mixed with K-feldspar at a ratio of 1 : 1 and milled for 120 min under dry and wet conditions. For use in the glasshouse experiment, the initially milled rocks were further milled with a vertical stirred ball mill for 1 h in a dry condition. The elemental and mineralogical compositions of the SRFs were determined using XRF and XRD. Effects of milling on major physicochemical properties of milled rocks were determined, including particle size (Malvern Mastersizer), surface area (BET-N2), quantities of amorphous constituents (XRD, oxalic acid-oxalate extraction, TEM), extractable cations (1M CH3COONH4 pH 7), pHH2O, and electric conductivity. Dissolution kinetics in 0.01M acetic-citric acids (for 56 days) and soil (for 10 months) were determined. Based on the results of these laboratory experiments, a glasshouse experiment was carried out for 12 months to evaluate the effects of SRF application on growth and nutrient uptake of ryegrass grown on several soils. Milling reduced particle size, enhanced amorphism, and increased the release of structural cations from the rocks, with the effects due to dry milling being greater than for wet milling. The optimum milling times which produced maximum amounts of exchangeable cations (Na, K, Ca, and Mg) were 30 - 90 min, depending on rock type. The use of NaCl and KCl as milling additives did not enhance the properties of the SRF

AB - [Truncated abstract] Many researchers have proposed the use of silicate rock fertilizers (SRFs) as alternatives to chemical fertilizers. However, the application of SRFs in modern agricultural practices is limited due mainly to the slow release of plant-nutrient elements from SRFs and consequently many tonnes/ha of SRFs may need to be applied. Simple and inexpensive methods of modifying the physicochemical properties of SRFs are needed to improve the agronomic effectiveness of SRFs. This thesis is focused on the evaluation of high-energy milling to produce superfine particles to improve the effectiveness of mafic (basalt and dolerite) and felsic (gneiss and K-feldspar) rocks for use as fertilizers. The ground mafic rocks are for use as Ca and Mg fertilizers and the ground felsic rocks as K fertilizers. Laboratory and glasshouse experiments were conducted with several potential SRFs. In laboratory experiments, initially milled rocks (Ø< 250 μm for basalt, dolerite, and gneiss; Ø < 150 μm for K-feldspar) were further milled with a ball mill (Spex-8000) for 10, 30, 60, 90, and 120 min under dry and wet (rock/water ratio = 1/3) conditions. To investigate possible reaction between constituents, other subsamples of initially milled basalt, dolerite, and gneiss were added to reagent grade NaCl or KCl (4.5 g rock + 0.5 g NaCl or KCl) and milled for 120 min under dry and wet conditions. Basalt and dolerite were also mixed with K-feldspar at a ratio of 1 : 1 and milled for 120 min under dry and wet conditions. For use in the glasshouse experiment, the initially milled rocks were further milled with a vertical stirred ball mill for 1 h in a dry condition. The elemental and mineralogical compositions of the SRFs were determined using XRF and XRD. Effects of milling on major physicochemical properties of milled rocks were determined, including particle size (Malvern Mastersizer), surface area (BET-N2), quantities of amorphous constituents (XRD, oxalic acid-oxalate extraction, TEM), extractable cations (1M CH3COONH4 pH 7), pHH2O, and electric conductivity. Dissolution kinetics in 0.01M acetic-citric acids (for 56 days) and soil (for 10 months) were determined. Based on the results of these laboratory experiments, a glasshouse experiment was carried out for 12 months to evaluate the effects of SRF application on growth and nutrient uptake of ryegrass grown on several soils. Milling reduced particle size, enhanced amorphism, and increased the release of structural cations from the rocks, with the effects due to dry milling being greater than for wet milling. The optimum milling times which produced maximum amounts of exchangeable cations (Na, K, Ca, and Mg) were 30 - 90 min, depending on rock type. The use of NaCl and KCl as milling additives did not enhance the properties of the SRF

KW - Rocks, Siliceous

KW - Fertilizers

KW - Silicate minerals

KW - Silicate rock fertilizers

KW - Mafic rocks

KW - High energy milling

KW - Felsic rocks

KW - Effectiveness

M3 - Doctoral Thesis

ER -