TY - JOUR
T1 - The effect of planning time on penultimate and ultimate step kinematics and subsequent knee moments during sidestepping
AU - Byrne, Sean
AU - Lay, Brendan
AU - Staynor, Jonathan
AU - Alderson, Jacqueline
AU - Donnelly, Cyril J
PY - 2022/9
Y1 - 2022/9
N2 - Frontal plane postures during the ultimate step of sidestepping are linked to increased anterior cruciate ligament injury risk. However, there is a lack of research detailing the kinematic strategies present in the penultimate step. This study, therefore, investigated penultimate and ultimate step kinematics of planned sidestepping (pSS) and unplanned sidestepping (upSS) to further understand the effect of planning time on known ultimate step kinematic and kinetic differences. Sixty male amateur Australian Rules football players performed three trials of straight-line running (RUN), pSS, and upSS in a randomized order. Mediolateral foot placement and three-dimensional joint kinematics for the knee, pelvis, and trunk were measured at final foot contact of the penultimate step and initial foot contact of the ultimate step. Peak knee moments were measured during the weight acceptance phase of the ultimate step. In pSS, at the penultimate step final foot contact, the support foot was placed across the midline of the center of mass, in the frontal plane, contralateral to the sidestep direction. Greater trunk lateral flexion toward the sidestep direction and greater negative pelvic lateral tilt were observed in pSS compared with upSS and RUN. Differences between pSS and upSS frontal plane kinematics at penultimate step final foot contact suggest preparatory reorientation strategies are likely constrained by the amount of planning time available. As there are clear differences in preparatory kinematics, we recommend that planning time be considered when training and assessing sidestepping maneuvers and planned and unplanned maneuvers not be treated as interchangeable skills.
AB - Frontal plane postures during the ultimate step of sidestepping are linked to increased anterior cruciate ligament injury risk. However, there is a lack of research detailing the kinematic strategies present in the penultimate step. This study, therefore, investigated penultimate and ultimate step kinematics of planned sidestepping (pSS) and unplanned sidestepping (upSS) to further understand the effect of planning time on known ultimate step kinematic and kinetic differences. Sixty male amateur Australian Rules football players performed three trials of straight-line running (RUN), pSS, and upSS in a randomized order. Mediolateral foot placement and three-dimensional joint kinematics for the knee, pelvis, and trunk were measured at final foot contact of the penultimate step and initial foot contact of the ultimate step. Peak knee moments were measured during the weight acceptance phase of the ultimate step. In pSS, at the penultimate step final foot contact, the support foot was placed across the midline of the center of mass, in the frontal plane, contralateral to the sidestep direction. Greater trunk lateral flexion toward the sidestep direction and greater negative pelvic lateral tilt were observed in pSS compared with upSS and RUN. Differences between pSS and upSS frontal plane kinematics at penultimate step final foot contact suggest preparatory reorientation strategies are likely constrained by the amount of planning time available. As there are clear differences in preparatory kinematics, we recommend that planning time be considered when training and assessing sidestepping maneuvers and planned and unplanned maneuvers not be treated as interchangeable skills.
KW - biomechanics
KW - change of direction
KW - cutting
KW - knee injury
KW - preparation
UR - http://www.scopus.com/inward/record.url?scp=85131568499&partnerID=8YFLogxK
U2 - 10.1111/sms.14194
DO - 10.1111/sms.14194
M3 - Article
C2 - 35612593
SN - 0905-7188
VL - 32
SP - 1366
EP - 1376
JO - Scandinavian Journal of Medicine & Science in Sports
JF - Scandinavian Journal of Medicine & Science in Sports
IS - 9
ER -