Abstract
We used our newly developed linkage disequilibrium (LD) plotting software, JLIN, to plot linkage disequilibrium between pairs of single-nucleotide polymorphisms ( SNPs) for three chromosomes of the Genetic Analysis Workshop 14 Aipotu simulated population to assess the effect of missing data on LD calculations. Our haplotype analysis program, SIMHAP, was used to assess the effect of missing data on haplotype- phenotype association. Genotype data was removed at random, at levels of 1%, 5%, and 10%, and the LD calculations and haplotype association results for these levels of missingness were compared to those for the complete dataset. It was concluded that ignoring individuals with missing data substantially affects the number of regions of LD detected which, in turn, could affect tagging SNPs chosen to generate haplotypes.
Original language | English |
---|---|
Title of host publication | BMC Genetics |
Editors | P. Newmark |
Place of Publication | United Kingdom |
Publisher | BioMed Central |
Pages | S151 |
Volume | 6 (Suppl 1) |
Edition | Noordwijkerhout, Netherlands |
ISBN (Print) | 14712156 |
DOIs | |
Publication status | Published - 2005 |
Event | The effect of missing data on linkage disequilibrium mapping and haplotype association analysis in the GAW14 simulated datasets - Noordwijkerhout, Netherlands Duration: 1 Jan 2005 → … |
Conference
Conference | The effect of missing data on linkage disequilibrium mapping and haplotype association analysis in the GAW14 simulated datasets |
---|---|
Period | 1/01/05 → … |