The effect of equal-channel angular pressing on the microstructure, the mechanical and corrosion properties and the anti-tumor activity of magnesium alloyed with silver

Yuri Estrin, Natalia Martynenko, Natalia Anisimova, Diana Temralieva, Mikhail Kiselevskiy, Vladimir Serebryany, Georgy Raab, Boris Straumal, Björn Wiese, Regine Willumeit-Römer, Sergey Dobatkin

Research output: Contribution to journalArticle

Abstract

The effect of equal-channel angular pressing (ECAP) on the microstructure, texture, mechanical properties, corrosion resistance and cytotoxicity of two magnesium-silver alloys, Mg-2.0%Ag and Mg-4.0%Ag, was studied. Their average grain size was found to be reduced to 3.2 ± 1.4 μm and 2.8 ± 1.3 μm, respectively. Despite the substantial grain refinement, a drop in the strength characteristics of the alloys was observed, which can be attributed to the formation of inclined basal texture. On a positive side, an increase in tensile ductility to ~34% for Mg-2.0%Ag and ~27% for Mg-4.0%Ag was observed. This effect can be associated with the activity of basal and prismatic slip induced by ECAP. One of the ECAP regimes tested gave rise to a drop in the corrosion resistance of both alloys. An interesting observation was a cytotoxic effect both alloys had on tumor cells in vitro. This effect was accompanied with the release of lactate dehydrogenase, an increase in oxidative stress, coupled with the induction of NO-ions and an increase in the content of such markers of apoptosis as Annexin V and Caspase 3/7. Differences in the chemical composition and the processing history-dependent microstructure of the alloys did not have any significant effect on the magnitude of their antiproliferative effect.

Original languageEnglish
Article number3832
JournalMaterials
Volume12
Issue number23
DOIs
Publication statusPublished - 1 Dec 2019

    Fingerprint

Cite this