The distribution and origins of extremely acidic saline groundwaters in the south of Western Australia – Groundwater and digital mapping datasets provide new insights

Adam M. Lillicrap, Vera Biermann, Richard J. George, David J. Gray, Carolyn E. Oldham

    Research output: Contribution to journalArticle

    1 Citation (Scopus)

    Abstract

    Some of the largest extents of naturally occurring acidic waters are found across southern Australia. The origins of these systems remain poorly understood with many hypotheses for their genesis. Australian government agency groundwater datasets and mapping data (vegetation, geology, regolith and soils) for south-western Australia, unavailable to previous researchers, were statistically analysed to better understand the origins of acidic groundwater and guide additional fieldwork to study the origins of acidic saline groundwater. The groundwater data showed a distinct bimodal distribution in pH; the ‘acid’ population had a median pH of 3.5 and the larger ‘non-acid’ population had a median pH of 6.6. Acidic groundwater became progressively more common further from the coast towards the drier internally drained regions. Acidic groundwater was mostly confined to the lower slopes and valley floors with localised controls on distribution. Paradoxically, subsoil alkalinity within the internally drained inland regions had the strongest correlation with acidic groundwater (r2 = 0.85). Vegetation was also a strong predictor of acidic groundwater. Acidic groundwater had the highest occurrence under Eucalyptus woodlands and shrublands that grew on alkaline calcareous soils. Pre-clearing soil data in areas with acidic saline groundwater showed that the upper 1 m of the unsaturated zone had a pH around 8 while the pH at depths greater than 5 m decreased to <4. Based on the observations it is proposed that biogenic formation of calcareous soils occurs in the upper 1 m of the profile, calcium is sourced from the deeper profile where the root biota exchanges calcium for hydrogen ions to maintain charge balance. Iron is mobilised from the upper soil profile and concentrates lower in the profile at depths >1.5 m. There, the iron is reduced around roots and the alkalinity generated by microbial iron reduction is removed by biogenic calcification processes. The iron moves in solution further down the profile following roots where it comes in contact with the oxygenated unsaturated zone matrix and is oxidised generating acid. The resulting acidic recharging solution acidifies the unsaturated zone matrix. Saline groundwater moving through the matrix becomes acidified due to ion exchange or direct recharge. The main chemical processes were modelled in PHREEQC to test the plausibility of the hypothesis and acidic solutions with a pH of 3.8 or lower were obtained.

    Original languageEnglish
    Pages (from-to)717-731
    Number of pages15
    JournalJournal of Hydrology
    Volume556
    DOIs
    Publication statusPublished - 1 Jan 2018

    Fingerprint Dive into the research topics of 'The distribution and origins of extremely acidic saline groundwaters in the south of Western Australia – Groundwater and digital mapping datasets provide new insights'. Together they form a unique fingerprint.

    Cite this