The collaboration on social science and immunisation (COSSI): Global lessons from a successful Australian research and practice network

Katie Attwell, Kerrie Wiley, Julie Leask, Holly Seale, Samantha J. Carlson, Patrick Cashman, Joshua Karras, Margie Danchin, Jessica Kaufman

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Direct-collapse black holes (DCBHs) of mass ∼104−105 M that form in HI-cooling halos in the early Universe are promising progenitors of the &109 M supermassive black holes that fuel observed z & 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up to z ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈1−5 µm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2 in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼29 AB mag. We identify two objects with spectral energy distributions consistent with theoretical DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of .5 × 10−4 comoving Mpc−3 (cMpc−3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the theoretical models at z ≈ 6−14. c The Authors 2024.
Original languageEnglish
Pages (from-to)1420-1423
Number of pages4
JournalVaccine
Volume42
Issue number7
DOIs
Publication statusPublished - 7 Mar 2024

Fingerprint

Dive into the research topics of 'The collaboration on social science and immunisation (COSSI): Global lessons from a successful Australian research and practice network'. Together they form a unique fingerprint.

Cite this