The apparent feed-forward response to vapour pressure deficit of stomata in droughted, field-grown Eucalyptus globulus Labill

Craig Macfarlane, D.A. White, M.A. Adams

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

This study tested a multiplicative model of stomatal response to environment for drought-affected trees of Eucalyptus globulus Labill. growing in southern Australia. The model incorporates a feed-forward response to vapour pressure deficit of ambient air (δea) and performed well if evaluated using reduced major axis regression and log-transformed   data.   There   was   strong   evidence   from gas-exchange data, leaf water potentials and sapflow measurements of the feed-forward response by stomata to leaf-to-air vapour pressure deficit (δel). The response of stomata to δel was irreversible. Stomatal conductance and the rate of net photosynthesis were highly correlated and declined, together with the rate of transpiration, throughout the afternoon as δea increased despite increasing leaf water potentials. The concentration of CO2 inside leaves (ci) increased as stomatal conductance declined indicating increasing non-stomatal limitations to photosynthesis. The stomatal response to δel of E. globulus in the field is best described as an ‘apparent feed-forward response’ that probably results from both slowly reversible depression of net photosynthesis and abscisic acid accumulation in guard cells. We suggest that the stomatal response to ci may strengthen the link between photosynthetic capacity and stomatal conductance during leaf drying as a result of either drought or large δ el.
Original languageEnglish
Pages (from-to)1268-1280
JournalPlant, Cell and Environment
Volume27
Issue number10
DOIs
Publication statusPublished - 2004

Fingerprint

Dive into the research topics of 'The apparent feed-forward response to vapour pressure deficit of stomata in droughted, field-grown Eucalyptus globulus Labill'. Together they form a unique fingerprint.

Cite this