TY - JOUR
T1 - The AEROPATH project targeting Pseudomonas aeruginosa
T2 - Crystallographic studies for assessment of potential targets in early-stage drug discovery
AU - Moynie, L.
AU - Schnell, R.
AU - McMahon, S.A. A.
AU - Sandalova, T.
AU - Boulkerou, W.A. A.
AU - Schmidberger, Jason W.
AU - Alphey, M.
AU - Cukier, C.
AU - Duthie, F.
AU - Kopec, J.
AU - Liu, H.
AU - Jacewicz, A.
AU - Hunter, W.N. N.
AU - Naismith, J.H. H.
AU - Schneider, G.
PY - 2013
Y1 - 2013
N2 - Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns. © 2013 International Union of Crystallography. All rights reserved.
AB - Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns. © 2013 International Union of Crystallography. All rights reserved.
U2 - 10.1107/S1744309112044739
DO - 10.1107/S1744309112044739
M3 - Article
SN - 1744-3091
VL - 69
SP - 25
EP - 34
JO - Acta Crystallographica Section F: Structural Biology and Crystallization Communications
JF - Acta Crystallographica Section F: Structural Biology and Crystallization Communications
IS - 1
ER -