TY - JOUR
T1 - Termite Mounds Increase Functional Diversity of Woody Plants in African Savannas
AU - Joseph, Grant S.
AU - Seymour, Colleen L.
AU - Cumming, Graeme S.
AU - Cumming, David H.M.
AU - Mahlangu, Zacheus
N1 - Funding Information:
This research was funded by an NRF-SADC collaborative grant and the DST/NRF Centre of Excellence at the University of Cape Town. The Director General of the Zimbabwe National Parks and Wildlife Management Authority (ZNPWMA) granted permission to carry out this research under the auspices of a memorandum of understanding between the ZNPWMA and the Tropical Resource Ecology Programme (TREP) at the University of Zimbabwe. Chris Chapano and Anthony Mapaura, and Christien Bredenkamp of the National Herbaria of Harare and Pretoria, respectively, offered assistance and guidance in building a database of functional traits.
PY - 2014/7
Y1 - 2014/7
N2 - Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa's largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.
AB - Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa's largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.
KW - disturbances of herbivory and fire
KW - functional diversity
KW - functional groups
KW - Macrotermes
KW - resource patches
KW - soil resources
KW - spatial heterogeneity
UR - http://www.scopus.com/inward/record.url?scp=84904255068&partnerID=8YFLogxK
U2 - 10.1007/s10021-014-9761-9
DO - 10.1007/s10021-014-9761-9
M3 - Article
AN - SCOPUS:84904255068
SN - 1432-9840
VL - 17
SP - 808
EP - 819
JO - Ecosystems
JF - Ecosystems
IS - 5
ER -