TY - JOUR
T1 - Temperature correlations with vorticity and velocity in a turbulent cylinder wake
AU - Chen, J. G.
AU - Zhou, Y.
AU - Antonia, R. A.
AU - Zhou, T. M.
PY - 2020/8
Y1 - 2020/8
N2 - This work aims to understand the difference in the correlations between the fluctuating temperature and the vorticity from that between the fluctuating temperature and the velocity in a turbulent cylinder near wake. Measurements are made at x/d = 10, 20 and 40, where x is the streamwise distance from the cylinder axis and d is the cylinder diameter, with a Reynolds number of 2.5×103 based on d and the free-stream velocity. The three components of the fluctuating velocity vector ui(i = 1, 2 and 3), vorticity vector ωi (i = 1, 2 and 3), and temperature θ in the plane of the mean shear are measured simultaneously with a multi-wire probe consisting of four X-hotwires and four cold wires. It is found that at x/d = 10, both correlations between uiand θ and between ωi and θ predominantly take place at St = 0.21, due to the concentric distribution of the Kármán vortices and the heat. With increasing x/d, the correlation between ωi (i = 1, 2 and 3) and θ drops rapidly, as a result of the weakened Kármán vortices; in contrast, the correlation between u1 and θ increases appreciably, largely due to an enhanced correlation between u1 and θ at low frequencies or scales of motions larger than the Kármán vortex. The slowly decreasing (along x) two-point autocorrelations of u1 and θ suggest that the very-large-scale motions (VLSMs) found in wall flows occur also in the turbulent wake and are responsible for the high correlation between u1 and θ at low frequencies.
AB - This work aims to understand the difference in the correlations between the fluctuating temperature and the vorticity from that between the fluctuating temperature and the velocity in a turbulent cylinder near wake. Measurements are made at x/d = 10, 20 and 40, where x is the streamwise distance from the cylinder axis and d is the cylinder diameter, with a Reynolds number of 2.5×103 based on d and the free-stream velocity. The three components of the fluctuating velocity vector ui(i = 1, 2 and 3), vorticity vector ωi (i = 1, 2 and 3), and temperature θ in the plane of the mean shear are measured simultaneously with a multi-wire probe consisting of four X-hotwires and four cold wires. It is found that at x/d = 10, both correlations between uiand θ and between ωi and θ predominantly take place at St = 0.21, due to the concentric distribution of the Kármán vortices and the heat. With increasing x/d, the correlation between ωi (i = 1, 2 and 3) and θ drops rapidly, as a result of the weakened Kármán vortices; in contrast, the correlation between u1 and θ increases appreciably, largely due to an enhanced correlation between u1 and θ at low frequencies or scales of motions larger than the Kármán vortex. The slowly decreasing (along x) two-point autocorrelations of u1 and θ suggest that the very-large-scale motions (VLSMs) found in wall flows occur also in the turbulent wake and are responsible for the high correlation between u1 and θ at low frequencies.
UR - http://www.scopus.com/inward/record.url?scp=85084948010&partnerID=8YFLogxK
U2 - 10.1016/j.ijheatfluidflow.2020.108606
DO - 10.1016/j.ijheatfluidflow.2020.108606
M3 - Article
AN - SCOPUS:85084948010
SN - 0142-727X
VL - 84
JO - International Journal of Heat and Fluid Flow
JF - International Journal of Heat and Fluid Flow
M1 - 108606
ER -