Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential

Marie A Bogoyevitch, Ingrid Boehm, Aaron Oakley, Albert J Ketterman, Renae K Barr

Research output: Contribution to journalReview article

Abstract

The c-Jun N-terminal protein kinases (JNKs) form one subfamily of the mitogen-activated protein kinase (MAPK) group of serine/threonine protein kinases. The JNKs were first identified by their activation in response to a variety of extracellular stresses and their ability to phosphorylate the N-terminal transactivation domain of the transcription factor c-Jun. One approach to study the function of the JNKs has included in vivo gene knockouts of each of the three JNK genes. Whilst loss of either JNK1 or JNK2 alone appears to have no serious consequences, their combined knockout is embryonic lethal. In contrast, the loss of JNK3 is not embryonic lethal, but rather protects the adult brain from glutamate-induced excitotoxicity. This latter example has generated considerable enthusiasm with JNK3, considered an appropriate target for the treatment of diseases in which neuronal death should be prevented (e.g. stroke, Alzheimer's and Parkinson's diseases). More recently, these gene knockout animals have been used to demonstrate that JNK could provide a suitable target for the protection against obesity and diabetes and that JNKs may act as tumour suppressors. Considerable effort is being directed to the development of chemical inhibitors of the activators of JNKs (e.g. CEP-1347, an inhibitor of the MLK family of JNK pathway activators) or of the JNKs themselves (e.g. SP600125, a direct inhibitor of JNK activity). These most commonly used inhibitors have demonstrated efficacy for use in vivo, with the successful intervention to decrease brain damage in animal models (CEP-1347) or to ameliorate some of the symptoms of arthritis in other animal models (SP600125). Alternative peptide-based inhibitors of JNKs are now also in development. The possible identification of allosteric modifiers rather than direct ATP competitors could lead to inhibitors of unprecedented specificity and efficacy.

Original languageEnglish
Pages (from-to)89-101
Number of pages13
JournalBiochimica et Biophysica Acta
Volume1697
Issue number1-2
DOIs
Publication statusPublished - 11 Mar 2004

Fingerprint Dive into the research topics of 'Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential'. Together they form a unique fingerprint.

Cite this