TY - JOUR
T1 - Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies
AU - Kaitu'u-Lino, Tu'uhevaha J.
AU - Pattison, Scott
AU - Ye, Louie
AU - Tuohey, Laura
AU - Sluka, Pavel
AU - MacDiarmid, Jennifer
AU - Brahmbhatt, Himanshu
AU - Johns, Terrence
AU - Horne, Andrew W.
AU - Brown, Jeremy
AU - Tong, Stephen
PY - 2013/2/1
Y1 - 2013/2/1
N2 - Abnormal trophoblast growth can cause life-threatening disorders such as ectopic pregnancy, choriocarcinoma, and placenta accreta. EnGeneIC Delivery Vehicles (EDVs) are nanocells that can promote tissue-specific delivery of drugs and may be useful to medically treat such disorders. The objective of this study was to determine whether EDVs loaded with the chemotherapeutic doxorubicin and targeting the epidermal growth factor receptor (EGFR, very highly expressed on the placental surface) can regress placental cells in vitro, ex vivo, and in vivo. In female SCID mice, EGFR-targeted EDVs induced greater inhibition of JEG-3 (choriocarcinoma cells) tumor xenografts, compared with EDVs targeting an irrelevant antigen (nontargeted EDVs) or naked doxorubicin. EGFR-targeted EDVs were more readily taken up by human placental explants ex vivo and induced increased apoptosis (M30 antibody) compared with nontargeted EDVs. In vitro, EGFR-targeted EDVs administered to JEG-3 cells resulted in a dose-dependent inhibition of cell viability, proliferation, and increased apoptosis, a finding confirmed by continuous monitoring by xCELLigence. In conclusion, EGFR-targeted EDVs loaded with doxorubicin significantly inhibited trophoblastic tumor cell growth in vivo and in vitro and induced significant cell death ex vivo, potentially mediated by increasing apoptosis and decreasing proliferation. EDVs may be a novel nanoparticle treatment for ectopic pregnancy and other disorders of trophoblast growth.
AB - Abnormal trophoblast growth can cause life-threatening disorders such as ectopic pregnancy, choriocarcinoma, and placenta accreta. EnGeneIC Delivery Vehicles (EDVs) are nanocells that can promote tissue-specific delivery of drugs and may be useful to medically treat such disorders. The objective of this study was to determine whether EDVs loaded with the chemotherapeutic doxorubicin and targeting the epidermal growth factor receptor (EGFR, very highly expressed on the placental surface) can regress placental cells in vitro, ex vivo, and in vivo. In female SCID mice, EGFR-targeted EDVs induced greater inhibition of JEG-3 (choriocarcinoma cells) tumor xenografts, compared with EDVs targeting an irrelevant antigen (nontargeted EDVs) or naked doxorubicin. EGFR-targeted EDVs were more readily taken up by human placental explants ex vivo and induced increased apoptosis (M30 antibody) compared with nontargeted EDVs. In vitro, EGFR-targeted EDVs administered to JEG-3 cells resulted in a dose-dependent inhibition of cell viability, proliferation, and increased apoptosis, a finding confirmed by continuous monitoring by xCELLigence. In conclusion, EGFR-targeted EDVs loaded with doxorubicin significantly inhibited trophoblastic tumor cell growth in vivo and in vitro and induced significant cell death ex vivo, potentially mediated by increasing apoptosis and decreasing proliferation. EDVs may be a novel nanoparticle treatment for ectopic pregnancy and other disorders of trophoblast growth.
UR - http://www.scopus.com/inward/record.url?scp=84872692908&partnerID=8YFLogxK
U2 - 10.1210/en.2012-1832
DO - 10.1210/en.2012-1832
M3 - Article
C2 - 23288908
AN - SCOPUS:84872692908
SN - 0013-7227
VL - 154
SP - 911
EP - 919
JO - Endocrinology
JF - Endocrinology
IS - 2
ER -